
PyTorch-Metrics Documentation
Release 0.6.2

PyTorchLightning et al.

Dec 15, 2021

USER GUIDE

1 Using TorchMetrics 3
1.1 Module metrics . 3
1.2 Functional metrics . 3
1.3 Implementing a metric . 4

2 More reading 5
2.1 Quick Start . 5
2.2 Overview . 7
2.3 Implementing a Metric . 14
2.4 TorchMetrics in PyTorch Lightning . 21
2.5 Module metrics . 23
2.6 Functional metrics . 124
2.7 Contributor Covenant Code of Conduct . 183
2.8 Contributing . 184
2.9 Changelog . 187

3 Indices and tables 197

Index 199

i

ii

PyTorch-Metrics Documentation, Release 0.6.2

TorchMetrics is a collection of Machine learning metrics for distributed, scalable PyTorch models and an easy-to-use
API to create custom metrics. It offers the following benefits:

• Optimized for distributed-training

• A standardized interface to increase reproducibility

• Reduces Boilerplate

• Distributed-training compatible

• Rigorously tested

• Automatic accumulation over batches

• Automatic synchronization between multiple devices

You can use TorchMetrics in any PyTorch model, or with in PyTorch Lightning to enjoy additional features:

• This means that your data will always be placed on the same device as your metrics.

• Native support for logging metrics in Lightning to reduce even more boilerplate.

USER GUIDE 1

https://pytorch-lightning.readthedocs.io/en/stable/

PyTorch-Metrics Documentation, Release 0.6.2

2 USER GUIDE

CHAPTER

ONE

USING TORCHMETRICS

1.1 Module metrics

import torch
import torchmetrics

initialize metric
metric = torchmetrics.Accuracy()

n_batches = 10
for i in range(n_batches):

simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))
metric on current batch
acc = metric(preds, target)
print(f"Accuracy on batch {i}: {acc}")

metric on all batches using custom accumulation
acc = metric.compute()
print(f"Accuracy on all data: {acc}")

Module metric usage remains the same when using multiple GPUs or multiple nodes.

1.2 Functional metrics

import torch
import torchmetrics

simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))

acc = torchmetrics.functional.accuracy(preds, target)

3

PyTorch-Metrics Documentation, Release 0.6.2

1.3 Implementing a metric

class MyAccuracy(Metric):
def __init__(self, dist_sync_on_step=False):

call `self.add_state`for every internal state that is needed for the metrics␣
→˓computations

dist_reduce_fx indicates the function that should be used to reduce
state from multiple processes
super().__init__(dist_sync_on_step=dist_sync_on_step)

self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")

def update(self, preds: torch.Tensor, target: torch.Tensor):
update metric states
preds, target = self._input_format(preds, target)
assert preds.shape == target.shape

self.correct += torch.sum(preds == target)
self.total += target.numel()

def compute(self):
compute final result
return self.correct.float() / self.total

4 Chapter 1. Using TorchMetrics

CHAPTER

TWO

MORE READING

2.1 Quick Start

TorchMetrics is a collection of 60+ PyTorch metrics implementations and an easy-to-use API to create custom metrics.
It offers:

• A standardized interface to increase reproducability

• Reduces Boilerplate

• Distrubuted-training compatible

• Rigorously tested

• Automatic accumulation over batches

• Automatic synchronization between multiple devices

You can use TorchMetrics in any PyTorch model, or with in PyTorch Lightning to enjoy additional features:

• This means that your data will always be placed on the same device as your metrics.

• Native support for logging metrics in Lightning to reduce even more boilerplate.

2.1.1 Install

You can install TorchMetrics using pip or conda:

pip install torchmetrics

2.1.2 Using TorchMetrics

Functional metrics

Similar to torch.nn, most metrics have both a class-based and a functional version. The functional versions imple-
ment the basic operations required for computing each metric. They are simple python functions that as input take
torch.tensors and return the corresponding metric as a torch.tensor. The code-snippet below shows a simple exam-
ple for calculating the accuracy using the functional interface:

import torch
import our library
import torchmetrics

(continues on next page)

5

https://pytorch-lightning.readthedocs.io/en/stable/
https://pytorch.org/docs/stable/nn
https://pytorch.org/docs/stable/tensors.html

PyTorch-Metrics Documentation, Release 0.6.2

(continued from previous page)

simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))

acc = torchmetrics.functional.accuracy(preds, target)

Module metrics

Nearly all functional metrics have a corresponding class-based metric that calls it a functional counterpart underneath.
The class-based metrics are characterized by having one or more internal metrics states (similar to the parameters of
the PyTorch module) that allow them to offer additional functionalities:

• Accumulation of multiple batches

• Automatic synchronization between multiple devices

• Metric arithmetic

The code below shows how to use the class-based interface:

import torch
import our library
import torchmetrics

initialize metric
metric = torchmetrics.Accuracy()

n_batches = 10
for i in range(n_batches):

simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))
metric on current batch
acc = metric(preds, target)
print(f"Accuracy on batch {i}: {acc}")

metric on all batches using custom accumulation
acc = metric.compute()
print(f"Accuracy on all data: {acc}")

Reseting internal state such that metric ready for new data
metric.reset()

6 Chapter 2. More reading

PyTorch-Metrics Documentation, Release 0.6.2

2.1.3 Implementing your own metric

Implementing your own metric is as easy as subclassing an torch.nn.Module. Simply, subclass Metric and do the
following:

1. Implement __init__ where you call self.add_state for every internal state that is needed for the metrics
computations

2. Implement update method, where all logic that is necessary for updating metric states go

3. Implement compute method, where the final metric computations happens

For practical examples and more info about implementing a metric, please see this page.

2.2 Overview

The torchmetrics is a Metrics API created for easy metric development and usage in PyTorch and PyTorch Lightning.
It is rigorously tested for all edge cases and includes a growing list of common metric implementations.

The metrics API provides update(), compute(), reset() functions to the user. The metric base class inherits
torch.nn.Module which allows us to call metric(...) directly. The forward() method of the base Metric class
serves the dual purpose of calling update() on its input and simultaneously returning the value of the metric over the
provided input.

These metrics work with DDP in PyTorch and PyTorch Lightning by default. When .compute() is called in dis-
tributed mode, the internal state of each metric is synced and reduced across each process, so that the logic present in
.compute() is applied to state information from all processes.

This metrics API is independent of PyTorch Lightning. Metrics can directly be used in PyTorch as shown in the
example:

from torchmetrics.classification import Accuracy

train_accuracy = Accuracy()
valid_accuracy = Accuracy(compute_on_step=False)

for epoch in range(epochs):
for x, y in train_data:

y_hat = model(x)

training step accuracy
batch_acc = train_accuracy(y_hat, y)

for x, y in valid_data:
y_hat = model(x)
valid_accuracy(y_hat, y)

total accuracy over all training batches
total_train_accuracy = train_accuracy.compute()

total accuracy over all validation batches
total_valid_accuracy = valid_accuracy.compute()

Note: Metrics contain internal states that keep track of the data seen so far. Do not mix metric states across training,

2.2. Overview 7

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

PyTorch-Metrics Documentation, Release 0.6.2

validation and testing. It is highly recommended to re-initialize the metric per mode as shown in the examples above.

Note: Metric states are not added to the models state_dict by default. To change this, after initializing the metric,
the method .persistent(mode) can be used to enable (mode=True) or disable (mode=False) this behaviour.

2.2.1 Metrics and devices

Metrics are simple subclasses of Module and their metric states behave similar to buffers and parameters of modules.
This means that metrics states should be moved to the same device as the input of the metric:

from torchmetrics import Accuracy

target = torch.tensor([1, 1, 0, 0], device=torch.device("cuda", 0))
preds = torch.tensor([0, 1, 0, 0], device=torch.device("cuda", 0))

Metric states are always initialized on cpu, and needs to be moved to
the correct device
confmat = Accuracy(num_classes=2).to(torch.device("cuda", 0))
out = confmat(preds, target)
print(out.device) # cuda:0

However, when properly defined inside a Module or LightningModule the metric will be be automatically move
to the same device as the the module when using .to(device). Being properly defined means that the metric is
correctly identified as a child module of the model (check .children() attribute of the model). Therefore, metrics
cannot be placed in native python list and dict, as they will not be correctly identified as child modules. Instead of
list use ModuleList and instead of dict use ModuleDict. Furthermore, when working with multiple metrics the
native MetricCollection module can also be used to wrap multiple metrics.

from torchmetrics import Accuracy, MetricCollection

class MyModule(torch.nn.Module):
def __init__(self):

...
valid ways metrics will be identified as child modules
self.metric1 = Accuracy()
self.metric2 = nn.ModuleList(Accuracy())
self.metric3 = nn.ModuleDict({'accuracy': Accuracy()})
self.metric4 = MetricCollection([Accuracy()]) # torchmetrics build-in collection␣

→˓class

def forward(self, batch):
data, target = batch
preds = self(data)
...
val1 = self.metric1(preds, target)
val2 = self.metric2[0](preds, target)
val3 = self.metric3['accuracy'](preds, target)
val4 = self.metric4(preds, target)

You can always check which device the metric is located on using the .device property.

8 Chapter 2. More reading

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.ModuleList.html#torch.nn.ModuleList
https://pytorch.org/docs/stable/generated/torch.nn.ModuleDict.html#torch.nn.ModuleDict

PyTorch-Metrics Documentation, Release 0.6.2

Metrics in Dataparallel (DP) mode

When using metrics in Dataparallel (DP) mode, one should be aware DP will both create and clean-up replicas of Metric
objects during a single forward pass. This has the consequence, that the metric state of the replicas will as default be
destroyed before we can sync them. It is therefore recommended, when using metrics in DP mode, to initialize them
with dist_sync_on_step=True such that metric states are synchonized between the main process and the replicas
before they are destroyed.

Addtionally, if metrics are used together with a LightningModule the metric update/logging should be done in the
<mode>_step_end method (where <mode> is either training, validation or test), else it will lead to wrong
accumulation. In practice do the following:

def training_step(self, batch, batch_idx):
data, target = batch
preds = self(data)
...
return {'loss': loss, 'preds': preds, 'target': target}

def training_step_end(self, outputs):
#update and log
self.metric(outputs['preds'], outputs['target'])
self.log('metric', self.metric)

Metrics in Distributed Data Parallel (DDP) mode

When using metrics in Distributed Data Parallel (DDP) mode, one should be aware that DDP will add additional
samples to your dataset if the size of your dataset is not equally divisible by batch_size * num_processors. The
added samples will always be replicates of datapoints already in your dataset. This is done to secure an equal load
for all processes. However, this has the consequence that the calculated metric value will be sligtly bias towards those
replicated samples, leading to a wrong result.

During training and/or validation this may not be important, however it is highly recommended when evaluating the
test dataset to only run on a single gpu or use a join context in conjunction with DDP to prevent this behaviour.

2.2.2 Metrics and 16-bit precision

Most metrics in our collection can be used with 16-bit precision (torch.half) tensors. However, we have found the
following limitations:

• In general pytorch had better support for 16-bit precision much earlier on GPU than CPU. Therefore, we rec-
ommend that anyone that want to use metrics with half precision on CPU, upgrade to atleast pytorch v1.6 where
support for operations such as addition, subtraction, multiplication ect. was added.

• Some metrics does not work at all in half precision on CPU. We have explicitly stated this in their docstring, but
they are also listed below:

– PSNR and psnr [func]

– SSIM and ssim [func]

– KLDivergence and kl_divergence [func]

You can always check the precision/dtype of the metric by checking the .dtype property.

2.2. Overview 9

https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html#torch.nn.DataParallel
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://pytorch.org/docs/stable/_modules/torch/nn/parallel/distributed.html#DistributedDataParallel.join

PyTorch-Metrics Documentation, Release 0.6.2

2.2.3 Metric Arithmetics

Metrics support most of python built-in operators for arithmetic, logic and bitwise operations.

For example for a metric that should return the sum of two different metrics, implementing a new metric is an overhead
that is not necessary. It can now be done with:

first_metric = MyFirstMetric()
second_metric = MySecondMetric()

new_metric = first_metric + second_metric

new_metric.update(*args, **kwargs) now calls update of first_metric and second_metric. It forwards
all positional arguments but forwards only the keyword arguments that are available in respective metric’s update
declaration. Similarly new_metric.compute() now calls compute of first_metric and second_metric and adds
the results up. It is important to note that all implemented operations always returns a new metric object. This means that
the line first_metric == second_metricwill not return a bool indicating if first_metric and second_metric
is the same metric, but will return a new metric that checks if the first_metric.compute() == second_metric.
compute().

This pattern is implemented for the following operators (with a being metrics and b being metrics, tensors, integer or
floats):

• Addition (a + b)

• Bitwise AND (a & b)

• Equality (a == b)

• Floordivision (a // b)

• Greater Equal (a >= b)

• Greater (a > b)

• Less Equal (a <= b)

• Less (a < b)

• Matrix Multiplication (a @ b)

• Modulo (a % b)

• Multiplication (a * b)

• Inequality (a != b)

• Bitwise OR (a | b)

• Power (a ** b)

• Subtraction (a - b)

• True Division (a / b)

• Bitwise XOR (a ^ b)

• Absolute Value (abs(a))

• Inversion (~a)

• Negative Value (neg(a))

• Positive Value (pos(a))

• Indexing (a[0])

10 Chapter 2. More reading

PyTorch-Metrics Documentation, Release 0.6.2

Note: Some of these operations are only fully supported from Pytorch v1.4 and onwards, explicitly we found: add,
mul, rmatmul, rsub, rmod

2.2.4 MetricCollection

In many cases it is beneficial to evaluate the model output by multiple metrics. In this case the MetricCollection
class may come in handy. It accepts a sequence of metrics and wraps theses into a single callable metric class, with the
same interface as any other metric.

Example:

from torchmetrics import MetricCollection, Accuracy, Precision, Recall
target = torch.tensor([0, 2, 0, 2, 0, 1, 0, 2])
preds = torch.tensor([2, 1, 2, 0, 1, 2, 2, 2])
metric_collection = MetricCollection([

Accuracy(),
Precision(num_classes=3, average='macro'),
Recall(num_classes=3, average='macro')

])
print(metric_collection(preds, target))

{'Accuracy': tensor(0.1250),
'Precision': tensor(0.0667),
'Recall': tensor(0.1111)}

Similarly it can also reduce the amount of code required to log multiple metrics inside your LightningModule

from torchmetrics import Accuracy, MetricCollection, Precision, Recall

class MyModule(LightningModule):
def __init__(self):

metrics = MetricCollection([Accuracy(), Precision(), Recall()])
self.train_metrics = metrics.clone(prefix='train_')
self.valid_metrics = metrics.clone(prefix='val_')

def training_step(self, batch, batch_idx):
logits = self(x)
...
output = self.train_metrics(logits, y)
use log_dict instead of log
metrics are logged with keys: train_Accuracy, train_Precision and train_Recall
self.log_dict(output)

def validation_step(self, batch, batch_idx):
logits = self(x)
...
output = self.valid_metrics(logits, y)
use log_dict instead of log
metrics are logged with keys: val_Accuracy, val_Precision and val_Recall
self.log_dict(output)

2.2. Overview 11

PyTorch-Metrics Documentation, Release 0.6.2

Note: MetricCollection as default assumes that all the metrics in the collection have the same call signature. If this is
not the case, input that should be given to different metrics can given as keyword arguments to the collection.

class torchmetrics.MetricCollection(metrics, *additional_metrics, prefix=None, postfix=None)
MetricCollection class can be used to chain metrics that have the same call pattern into one single class.

Parameters

• metrics¶ (Union[Metric, Sequence[Metric], Dict[str, Metric]]) – One of the fol-
lowing

– list or tuple (sequence): if metrics are passed in as a list or tuple, will use the metrics class
name as key for output dict. Therefore, two metrics of the same class cannot be chained
this way.

– arguments: similar to passing in as a list, metrics passed in as arguments will use their
metric class name as key for the output dict.

– dict: if metrics are passed in as a dict, will use each key in the dict as key for output dict.
Use this format if you want to chain together multiple of the same metric with different
parameters. Note that the keys in the output dict will be sorted alphabetically.

• prefix¶ (Optional[str]) – a string to append in front of the keys of the output dict

• postfix¶ (Optional[str]) – a string to append after the keys of the output dict

Raises

• ValueError – If one of the elements of metrics is not an instance of pl.metrics.
Metric.

• ValueError – If two elements in metrics have the same name.

• ValueError – If metrics is not a list, tuple or a dict.

• ValueError – If metrics is dict and additional_metrics are passed in.

• ValueError – If prefix is set and it is not a string.

• ValueError – If postfix is set and it is not a string.

Example (input as list):

>>> import torch
>>> from pprint import pprint
>>> from torchmetrics import MetricCollection, Accuracy, Precision, Recall
>>> target = torch.tensor([0, 2, 0, 2, 0, 1, 0, 2])
>>> preds = torch.tensor([2, 1, 2, 0, 1, 2, 2, 2])
>>> metrics = MetricCollection([Accuracy(),
... Precision(num_classes=3, average='macro'),
... Recall(num_classes=3, average='macro')])
>>> metrics(preds, target)
{'Accuracy': tensor(0.1250), 'Precision': tensor(0.0667), 'Recall': tensor(0.
→˓1111)}

Example (input as arguments):

12 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

>>> metrics = MetricCollection(Accuracy(), Precision(num_classes=3, average=
→˓'macro'),
... Recall(num_classes=3, average='macro'))
>>> metrics(preds, target)
{'Accuracy': tensor(0.1250), 'Precision': tensor(0.0667), 'Recall': tensor(0.
→˓1111)}

Example (input as dict):

>>> metrics = MetricCollection({'micro_recall': Recall(num_classes=3, average=
→˓'micro'),
... 'macro_recall': Recall(num_classes=3, average=
→˓'macro')})
>>> same_metric = metrics.clone()
>>> pprint(metrics(preds, target))
{'macro_recall': tensor(0.1111), 'micro_recall': tensor(0.1250)}
>>> pprint(same_metric(preds, target))
{'macro_recall': tensor(0.1111), 'micro_recall': tensor(0.1250)}
>>> metrics.persistent()

Initializes internal Module state, shared by both nn.Module and ScriptModule.

add_metrics(metrics, *additional_metrics)
Add new metrics to Metric Collection.

Return type None

clone(prefix=None, postfix=None)
Make a copy of the metric collection :type _sphinx_paramlinks_torchmetrics.MetricCollection.clone.prefix:
Optional[str] :param _sphinx_paramlinks_torchmetrics.MetricCollection.clone.prefix: a string to ap-
pend in front of the metric keys :type _sphinx_paramlinks_torchmetrics.MetricCollection.clone.postfix:
Optional[str] :param _sphinx_paramlinks_torchmetrics.MetricCollection.clone.postfix: a string to
append after the keys of the output dict

Return type MetricCollection

forward(*args, **kwargs)
Iteratively call forward for each metric.

Positional arguments (args) will be passed to every metric in the collection, while keyword arguments
(kwargs) will be filtered based on the signature of the individual metric.

Return type Dict[str, Any]

items(keep_base=False)
Return an iterable of the ModuleDict key/value pairs. :type _sphinx_paramlinks_torchmetrics.MetricCollection.items.keep_base:
bool :param _sphinx_paramlinks_torchmetrics.MetricCollection.items.keep_base: Whether to add pre-
fix/postfix on the items collection.

Return type Iterable[Tuple[str, Module]]

keys(keep_base=False)
Return an iterable of the ModuleDict key. :type _sphinx_paramlinks_torchmetrics.MetricCollection.keys.keep_base:
bool :param _sphinx_paramlinks_torchmetrics.MetricCollection.keys.keep_base: Whether to add pre-
fix/postfix on the items collection.

Return type Iterable[Hashable]

2.2. Overview 13

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Hashable

PyTorch-Metrics Documentation, Release 0.6.2

persistent(mode=True)
Method for post-init to change if metric states should be saved to its state_dict.

Return type None

reset()
Iteratively call reset for each metric.

Return type None

update(*args, **kwargs)
Iteratively call update for each metric.

Positional arguments (args) will be passed to every metric in the collection, while keyword arguments
(kwargs) will be filtered based on the signature of the individual metric.

Return type None

2.2.5 Module vs Functional Metrics

The functional metrics follow the simple paradigm input in, output out. This means they don’t provide any advanced
mechanisms for syncing across DDP nodes or aggregation over batches. They simply compute the metric value based
on the given inputs.

Also, the integration within other parts of PyTorch Lightning will never be as tight as with the Module-based interface.
If you look for just computing the values, the functional metrics are the way to go. However, if you are looking for the
best integration and user experience, please consider also using the Module interface.

2.2.6 Metrics and differentiability

Metrics support backpropagation, if all computations involved in the metric calculation are differentiable. All modular
metrics have a property that determines if a metric is differentiable or not.

However, note that the cached state is detached from the computational graph and cannot be back-propagated. Not
doing this would mean storing the computational graph for each update call, which can lead to out-of-memory errors.
In practise this means that:

metric = MyMetric()
val = metric(pred, target) # this value can be back-propagated
val = metric.compute() # this value cannot be back-propagated

A functional metric is differentiable if its corresponding modular metric is differentiable.

2.3 Implementing a Metric

To implement your own custom metric, subclass the base Metric class and implement the following methods:

• __init__(): Each state variable should be called using self.add_state(...).

• update(): Any code needed to update the state given any inputs to the metric.

• compute(): Computes a final value from the state of the metric.

All you need to do is call add_state correctly to implement a custom metric with DDP. reset() is called on metric
state variables added using add_state().

14 Chapter 2. More reading

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

To see how metric states are synchronized across distributed processes, refer to add_state() docs from the base
Metric class.

Example implementation:

from torchmetrics import Metric

class MyAccuracy(Metric):
def __init__(self, dist_sync_on_step=False):

super().__init__(dist_sync_on_step=dist_sync_on_step)

self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")

def update(self, preds: torch.Tensor, target: torch.Tensor):
preds, target = self._input_format(preds, target)
assert preds.shape == target.shape

self.correct += torch.sum(preds == target)
self.total += target.numel()

def compute(self):
return self.correct.float() / self.total

2.3.1 Internal implementation details

This section briefly describes how metrics work internally. We encourage looking at the source code for more info. In-
ternally, Lightning wraps the user defined update() and compute()method. We do this to automatically synchronize
and reduce metric states across multiple devices. More precisely, calling update() does the following internally:

1. Clears computed cache.

2. Calls user-defined update().

Similarly, calling compute() does the following internally:

1. Syncs metric states between processes.

2. Reduce gathered metric states.

3. Calls the user defined compute() method on the gathered metric states.

4. Cache computed result.

From a user’s standpoint this has one important side-effect: computed results are cached. This means that no matter
how many times compute is called after one and another, it will continue to return the same result. The cache is first
emptied on the next call to update.

forward serves the dual purpose of both returning the metric on the current data and updating the internal metric
state for accumulating over multiple batches. The forward() method achieves this by combining calls to update and
compute in the following way (assuming metric is initialized with compute_on_step=True):

1. Calls update() to update the global metric state (for accumulation over multiple batches)

2. Caches the global state.

3. Calls reset() to clear global metric state.

4. Calls update() to update local metric state.

2.3. Implementing a Metric 15

PyTorch-Metrics Documentation, Release 0.6.2

5. Calls compute() to calculate metric for current batch.

6. Restores the global state.

This procedure has the consequence of calling the user defined update twice during a single forward call (one to
update global statistics and one for getting the batch statistics).

class torchmetrics.Metric(compute_on_step=True, dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Base class for all metrics present in the Metrics API.

Implements add_state(), forward(), reset() and a few other things to handle distributed synchronization
and per-step metric computation.

Override update() and compute() functions to implement your own metric. Use add_state() to register
metric state variables which keep track of state on each call of update() and are synchronized across processes
when compute() is called.

Note: Metric state variables can either be torch.Tensors or an empty list which can we used to store
torch.Tensors`.

Note: Different metrics only override update() and not forward(). A call to update() is valid, but it won’t
return the metric value at the current step. A call to forward() automatically calls update() and also returns
the metric value at the current step.

Parameters

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

add_state(name, default, dist_reduce_fx=None, persistent=False)
Adds metric state variable. Only used by subclasses.

Parameters

• name¶ (str) – The name of the state variable. The variable will then be accessible at
self.name.

• default¶ (Union[list, Tensor]) – Default value of the state; can either be a torch.
Tensor or an empty list. The state will be reset to this value when self.reset() is
called.

16 Chapter 2. More reading

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

• dist_reduce_fx¶ (Optional) – Function to reduce state across multiple processes in
distributed mode. If value is "sum", "mean", "cat", "min" or "max" we will use torch.
sum, torch.mean, torch.cat, torch.min and torch.max` respectively, each with ar-
gument dim=0. Note that the "cat" reduction only makes sense if the state is a list, and
not a tensor. The user can also pass a custom function in this parameter.

• persistent¶ (Optional) – whether the state will be saved as part of the modules
state_dict. Default is False.

Note: Setting dist_reduce_fx to None will return the metric state synchronized across different pro-
cesses. However, there won’t be any reduction function applied to the synchronized metric state.

The metric states would be synced as follows

• If the metric state is torch.Tensor, the synced value will be a stacked torch.Tensor across the
process dimension if the metric state was a torch.Tensor. The original torch.Tensor metric state
retains dimension and hence the synchronized output will be of shape (num_process, ...).

• If the metric state is a list, the synced value will be a list containing the combined elements from
all processes.

Note: When passing a custom function to dist_reduce_fx, expect the synchronized metric state to
follow the format discussed in the above note.

Raises

• ValueError – If default is not a tensor or an empty list.

• ValueError – If dist_reduce_fx is not callable or one of "mean", "sum", "cat", None.

Return type None

clone()
Make a copy of the metric.

Return type Metric

abstract compute()
Override this method to compute the final metric value from state variables synchronized across the dis-
tributed backend.

Return type Any

double()
Method override default and prevent dtype casting.

Please use metric.set_dtype(dtype) instead.

Return type Metric

float()
Method override default and prevent dtype casting.

Please use metric.set_dtype(dtype) instead.

Return type Metric

forward(*args, **kwargs)
Automatically calls update().

2.3. Implementing a Metric 17

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any

PyTorch-Metrics Documentation, Release 0.6.2

Returns the metric value over inputs if compute_on_step is True.

Return type Any

half()
Method override default and prevent dtype casting.

Please use metric.set_dtype(dtype) instead.

Return type Metric

persistent(mode=False)
Method for post-init to change if metric states should be saved to its state_dict.

Return type None

reset()
This method automatically resets the metric state variables to their default value.

Return type None

set_dtype(dst_type)
Special version of type for transferring all metric states to specific dtype :type
_sphinx_paramlinks_torchmetrics.Metric.set_dtype.dst_type: Union[str, dtype] :param
_sphinx_paramlinks_torchmetrics.Metric.set_dtype.dst_type: the desired type :type
_sphinx_paramlinks_torchmetrics.Metric.set_dtype.dst_type: type or string

Return type None

state_dict(destination=None, prefix='', keep_vars=False)
Returns a dictionary containing a whole state of the module.

Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding pa-
rameter and buffer names. Parameters and buffers set to None are not included.

Returns a dictionary containing a whole state of the module

Return type dict

Example:

>>> module.state_dict().keys()
['bias', 'weight']

sync(dist_sync_fn=None, process_group=None, should_sync=True, distributed_available=<function
jit_distributed_available>)

Sync function for manually controlling when metrics states should be synced across processes.

Parameters

• dist_sync_fn¶ (Optional[Callable]) – Function to be used to perform states synchro-
nization

• process_group¶ (Optional[Any]) – Specify the process group on which synchroniza-
tion is called. default: None (which selects the entire world)

• should_sync¶ (bool) – Whether to apply to state synchronization. This will have an
impact only when running in a distributed setting.

• distributed_available¶ (Optional[Callable]) – Function to determine if we are
running inside a distributed setting

Return type None

18 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

sync_context(dist_sync_fn=None, process_group=None, should_sync=True, should_unsync=True,
distributed_available=<function jit_distributed_available>)

Context manager to synchronize the states between processes when running in a distributed setting and
restore the local cache states after yielding.

Parameters

• dist_sync_fn¶ (Optional[Callable]) – Function to be used to perform states synchro-
nization

• process_group¶ (Optional[Any]) – Specify the process group on which synchroniza-
tion is called. default: None (which selects the entire world)

• should_sync¶ (bool) – Whether to apply to state synchronization. This will have an
impact only when running in a distributed setting.

• should_unsync¶ (bool) – Whether to restore the cache state so that the metrics can con-
tinue to be accumulated.

• distributed_available¶ (Optional[Callable]) – Function to determine if we are
running inside a distributed setting

Return type Generator

type(dst_type)
Method override default and prevent dtype casting.

Please use metric.set_dtype(dtype) instead.

Return type Metric

unsync(should_unsync=True)
Unsync function for manually controlling when metrics states should be reverted back to their local states.

Parameters should_unsync¶ (bool) – Whether to perform unsync

Return type None

abstract update(*_, **__)
Override this method to update the state variables of your metric class.

Return type None

property device: torch.device
Return the device of the metric.

Return type device

2.3.2 Contributing your metric to Torchmetrics

Wanting to contribute the metric you have implemented? Great, we are always open to adding more metrics to
torchmetrics as long as they serve a general purpose. However, to keep all our metrics consistent we request that
the implementation and tests gets formatted in the following way:

1. Start by reading our contribution guidelines.

2. First implement the functional backend. This takes cares of all the logic that goes into the metric. The code
should be put into a single file placed under torchmetrics/functional/"domain"/"new_metric".py
where domain is the type of metric (classification, regression, nlp etc) and new_metric is the name of the
metric. In this file, there should be the following three functions:

1. _new_metric_update(...): everything that has to do with type/shape checking and all logic re-
quired before distributed syncing need to go here.

2.3. Implementing a Metric 19

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://torchmetrics.readthedocs.io//en/latest/generated/CONTRIBUTING.html

PyTorch-Metrics Documentation, Release 0.6.2

2. _new_metric_compute(...): all remaining logic.

3. new_metric(...): essentially wraps the _update and _compute private functions into one public
function that makes up the functional interface for the metric.

Note: The functional accuracy metric is a great example of this division of logic.

3. In a corresponding file placed in torchmetrics/"domain"/"new_metric".py create the module interface:

1. Create a new module metric by subclassing torchmetrics.Metric.

2. In the __init__ of the module call self.add_state for as many metric states are needed for the
metric to proper accumulate metric statistics.

3. The module interface should essentially call the private _new_metric_update(...) in its update
method and similarly the _new_metric_compute(...) function in its compute. No logic should
really be implemented in the module interface. We do this to not have duplicate code to maintain.

Note: The module Accuracy metric that corresponds to the above functional example show-
cases these steps.

4. Remember to add binding to the different relevant __init__ files.

5. Testing is key to keeping torchmetrics trustworthy. This is why we have a very rigid testing protocol. This
means that we in most cases require the metric to be tested against some other common framework (sklearn,
scipy etc).

1. Create a testing file in tests/"domain"/test_"new_metric".py. Only one file is needed as it is
intended to test both the functional and module interface.

2. In that file, start by defining a number of test inputs that your metric should be evaluated on.

3. Create a testclass class NewMetric(MetricTester) that inherits from tests.helpers.
testers.MetricTester. This testclass should essentially implement the test_"new_metric
"_class and test_"new_metric"_fn methods that respectively tests the module interface and
the functional interface.

4. The testclass should be parameterized (using @pytest.mark.parametrize) by the different test
inputs defined initially. Additionally, the test_"new_metric"_class method should also be pa-
rameterized with an ddp parameter such that it gets tested in a distributed setting. If your metric has
additional parameters, then make sure to also parameterize these such that different combinations of
inputs and parameters gets tested.

5. (optional) If your metric raises any exception, please add tests that showcase this.

Note: The test file for accuracy metric shows how to implement such tests.

If you only can figure out part of the steps, do not fear to send a PR. We will much rather receive working metrics that
are not formatted exactly like our codebase, than not receiving any. Formatting can always be applied. We will gladly
guide and/or help implement the remaining :]

20 Chapter 2. More reading

https://github.com/PyTorchLightning/metrics/blob/master/torchmetrics/functional/classification/accuracy.py
https://github.com/PyTorchLightning/metrics/blob/master/torchmetrics/classification/accuracy.py
https://github.com/PyTorchLightning/metrics/blob/master/tests/classification/test_accuracy.py

PyTorch-Metrics Documentation, Release 0.6.2

2.4 TorchMetrics in PyTorch Lightning

TorchMetrics was originaly created as part of PyTorch Lightning, a powerful deep learning research framework de-
signed for scaling models without boilerplate.

While TorchMetrics was built to be used with native PyTorch, using TorchMetrics with Lightning offers additional
benefits:

• Module metrics are automatically placed on the correct device when properly defined inside a LightningModule.
This means that your data will always be placed on the same device as your metrics.

• Native support for logging metrics in Lightning using self.log inside your LightningModule.

• The .reset() method of the metric will automatically be called at the end of an epoch.

The example below shows how to use a metric in your LightningModule:

class MyModel(LightningModule):

def __init__(self):
...
self.accuracy = torchmetrics.Accuracy()

def training_step(self, batch, batch_idx):
x, y = batch
preds = self(x)
...
log step metric
self.accuracy(preds, y)
self.log('train_acc_step', self.accuracy)
...

def training_epoch_end(self, outs):
log epoch metric
self.log('train_acc_epoch', self.accuracy)

Note: self.log in Lightning only supports logging of scalar-tensors. While the vast majority of metrics in torch-
metrics returns a scalar tensor, some metrics such as ConfusionMatrix, ROC, MAP, RougeScore return outputs that
are non-scalar tensors (often dicts or list of tensors) and should therefore be dealt with separately. For info about the
return type and shape please look at the documentation for the compute method for each metric you want to log.

2.4.1 Logging TorchMetrics

Metric objects can also be directly logged in Lightning using the LightningModule self.log method. Lightning will
log the metric based on on_step and on_epoch flags present in self.log(...). If on_epoch is True, the logger
automatically logs the end of epoch metric value by calling .compute().

Note: sync_dist, sync_dist_op, sync_dist_group, reduce_fx and tbptt_reduce_fx flags from self.
log(...) don’t affect the metric logging in any manner. The metric class contains its own distributed synchronization
logic.

2.4. TorchMetrics in PyTorch Lightning 21

https://github.com/PyTorchLightning/pytorch-lightning
https://pytorch-lightning.readthedocs.io/en/stable/extensions/logging.html#logging-from-a-lightningmodule
https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html
https://pytorch-lightning.readthedocs.io/en/stable/extensions/logging.html#logging-from-a-lightningmodule

PyTorch-Metrics Documentation, Release 0.6.2

This however is only true for metrics that inherit the base class Metric, and thus the functional metric API provides
no support for in-built distributed synchronization or reduction functions.

class MyModule(LightningModule):

def __init__(self):
...
self.train_acc = torchmetrics.Accuracy()
self.valid_acc = torchmetrics.Accuracy()

def training_step(self, batch, batch_idx):
x, y = batch
preds = self(x)
...
self.train_acc(preds, y)
self.log('train_acc', self.train_acc, on_step=True, on_epoch=False)

def validation_step(self, batch, batch_idx):
logits = self(x)
...
self.valid_acc(logits, y)
self.log('valid_acc', self.valid_acc, on_step=True, on_epoch=True)

Note: the .reset() method of the metric will automatically be called at the end of an epoch within lightning only
if you pass the metric instance inside self.log. Also if you are calling .compute by yourself, you need to call the
.reset() too.

class MyModule(LightningModule):

def __init__(self):
...
self.train_acc = torchmetrics.Accuracy()
self.train_precision = torchmetrics.Precision()

def training_step(self, batch, batch_idx):
x, y = batch
preds = self(x)
...

this will reset the metric automatically at the epoch end
self.train_acc(preds, y)
self.log('train_acc', self.train_acc, on_step=True, on_epoch=False)

this will not reset the metric automatically at the epoch end
precision = self.train_precision(preds, y)
self.log('train_precision', precision, on_step=True, on_epoch=False)

def training_epoch_end(self, outputs):
this will compute and reset the metric automatically at the epoch end
self.log('train_epoch_accuracy', self.accuracy)

this will not reset the metric automatically at the epoch end so you
(continues on next page)

22 Chapter 2. More reading

https://pytorch-lightning.readthedocs.io/en/stable/extensions/logging.html#logging-from-a-lightningmodule

PyTorch-Metrics Documentation, Release 0.6.2

(continued from previous page)

need to call it yourself
mean_precision = self.precision.compute()
self.log('train_epoch_precision', mean_precision)
self.precision.reset()

Note: If using metrics in data parallel mode (dp), the metric update/logging should be done in the <mode>_step_end
method (where <mode> is either training, validation or test). This is due to metric states else being destroyed
after each forward pass, leading to wrong accumulation. In practice do the following:

class MyModule(LightningModule):

def training_step(self, batch, batch_idx):
data, target = batch
preds = self(data)
...
return {'loss': loss, 'preds': preds, 'target': target}

def training_step_end(self, outputs):
#update and log
self.metric(outputs['preds'], outputs['target'])
self.log('metric', self.metric)

For more details see Lightning Docs

2.5 Module metrics

2.5.1 Base class

The base Metric class is an abstract base class that are used as the building block for all other Module metrics.

class torchmetrics.Metric(compute_on_step=True, dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Base class for all metrics present in the Metrics API.

Implements add_state(), forward(), reset() and a few other things to handle distributed synchronization
and per-step metric computation.

Override update() and compute() functions to implement your own metric. Use add_state() to register
metric state variables which keep track of state on each call of update() and are synchronized across processes
when compute() is called.

Note: Metric state variables can either be torch.Tensors or an empty list which can we used to store
torch.Tensors`.

Note: Different metrics only override update() and not forward(). A call to update() is valid, but it won’t
return the metric value at the current step. A call to forward() automatically calls update() and also returns

2.5. Module metrics 23

https://pytorch-lightning.readthedocs.io/en/stable/extensions/logging.html#logging-from-a-lightningmodule

PyTorch-Metrics Documentation, Release 0.6.2

the metric value at the current step.

Parameters

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

add_state(name, default, dist_reduce_fx=None, persistent=False)
Adds metric state variable. Only used by subclasses.

Parameters

• name¶ (str) – The name of the state variable. The variable will then be accessible at
self.name.

• default¶ (Union[list, Tensor]) – Default value of the state; can either be a torch.
Tensor or an empty list. The state will be reset to this value when self.reset() is
called.

• dist_reduce_fx¶ (Optional) – Function to reduce state across multiple processes in
distributed mode. If value is "sum", "mean", "cat", "min" or "max" we will use torch.
sum, torch.mean, torch.cat, torch.min and torch.max` respectively, each with ar-
gument dim=0. Note that the "cat" reduction only makes sense if the state is a list, and
not a tensor. The user can also pass a custom function in this parameter.

• persistent¶ (Optional) – whether the state will be saved as part of the modules
state_dict. Default is False.

Note: Setting dist_reduce_fx to None will return the metric state synchronized across different pro-
cesses. However, there won’t be any reduction function applied to the synchronized metric state.

The metric states would be synced as follows

• If the metric state is torch.Tensor, the synced value will be a stacked torch.Tensor across the
process dimension if the metric state was a torch.Tensor. The original torch.Tensor metric state
retains dimension and hence the synchronized output will be of shape (num_process, ...).

• If the metric state is a list, the synced value will be a list containing the combined elements from
all processes.

Note: When passing a custom function to dist_reduce_fx, expect the synchronized metric state to
follow the format discussed in the above note.

Raises

• ValueError – If default is not a tensor or an empty list.

24 Chapter 2. More reading

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

• ValueError – If dist_reduce_fx is not callable or one of "mean", "sum", "cat", None.

Return type None

clone()
Make a copy of the metric.

Return type Metric

abstract compute()
Override this method to compute the final metric value from state variables synchronized across the dis-
tributed backend.

Return type Any

double()
Method override default and prevent dtype casting.

Please use metric.set_dtype(dtype) instead.

Return type Metric

float()
Method override default and prevent dtype casting.

Please use metric.set_dtype(dtype) instead.

Return type Metric

forward(*args, **kwargs)
Automatically calls update().

Returns the metric value over inputs if compute_on_step is True.

Return type Any

half()
Method override default and prevent dtype casting.

Please use metric.set_dtype(dtype) instead.

Return type Metric

persistent(mode=False)
Method for post-init to change if metric states should be saved to its state_dict.

Return type None

reset()
This method automatically resets the metric state variables to their default value.

Return type None

set_dtype(dst_type)
Special version of type for transferring all metric states to specific dtype :type
_sphinx_paramlinks_torchmetrics.Metric.set_dtype.dst_type: Union[str, dtype] :param
_sphinx_paramlinks_torchmetrics.Metric.set_dtype.dst_type: the desired type :type
_sphinx_paramlinks_torchmetrics.Metric.set_dtype.dst_type: type or string

Return type None

state_dict(destination=None, prefix='', keep_vars=False)
Returns a dictionary containing a whole state of the module.

Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding pa-
rameter and buffer names. Parameters and buffers set to None are not included.

2.5. Module metrics 25

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

Returns a dictionary containing a whole state of the module

Return type dict

Example:

>>> module.state_dict().keys()
['bias', 'weight']

sync(dist_sync_fn=None, process_group=None, should_sync=True, distributed_available=<function
jit_distributed_available>)

Sync function for manually controlling when metrics states should be synced across processes.

Parameters

• dist_sync_fn¶ (Optional[Callable]) – Function to be used to perform states synchro-
nization

• process_group¶ (Optional[Any]) – Specify the process group on which synchroniza-
tion is called. default: None (which selects the entire world)

• should_sync¶ (bool) – Whether to apply to state synchronization. This will have an
impact only when running in a distributed setting.

• distributed_available¶ (Optional[Callable]) – Function to determine if we are
running inside a distributed setting

Return type None

sync_context(dist_sync_fn=None, process_group=None, should_sync=True, should_unsync=True,
distributed_available=<function jit_distributed_available>)

Context manager to synchronize the states between processes when running in a distributed setting and
restore the local cache states after yielding.

Parameters

• dist_sync_fn¶ (Optional[Callable]) – Function to be used to perform states synchro-
nization

• process_group¶ (Optional[Any]) – Specify the process group on which synchroniza-
tion is called. default: None (which selects the entire world)

• should_sync¶ (bool) – Whether to apply to state synchronization. This will have an
impact only when running in a distributed setting.

• should_unsync¶ (bool) – Whether to restore the cache state so that the metrics can con-
tinue to be accumulated.

• distributed_available¶ (Optional[Callable]) – Function to determine if we are
running inside a distributed setting

Return type Generator

type(dst_type)
Method override default and prevent dtype casting.

Please use metric.set_dtype(dtype) instead.

Return type Metric

unsync(should_unsync=True)
Unsync function for manually controlling when metrics states should be reverted back to their local states.

Parameters should_unsync¶ (bool) – Whether to perform unsync

26 Chapter 2. More reading

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

Return type None

abstract update(*_, **__)
Override this method to update the state variables of your metric class.

Return type None

property device: torch.device
Return the device of the metric.

Return type device

2.5.2 Basic Aggregation Metrics

Torchmetrics comes with a number of metrics for aggregation of basic statistics: mean, max, min etc. of either tensors
or native python floats.

CatMetric

class torchmetrics.CatMetric(nan_strategy='warn', compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Concatenate a stream of values.

Parameters

• nan_strategy¶ (Union[str, float]) – options: - 'error': if any nan values are en-
counted will give a RuntimeError - 'warn': if any nan values are encounted will give a
warning and continue - 'ignore': all nan values are silently removed - a float: if a float is
provided will impude any nan values with this value

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Raises ValueError – If nan_strategy is not one of error, warn, ignore or a float

Example

>>> from torchmetrics import CatMetric
>>> metric = CatMetric()
>>> metric.update(1)
>>> metric.update(torch.tensor([2, 3]))
>>> metric.compute()
tensor([1., 2., 3.])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Compute the aggregated value.

2.5. Module metrics 27

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

Return type Tensor

update(value)
Update state with data.

Parameters value¶ (Union[float, Tensor]) – Either a float or tensor containing data. Addi-
tional tensor dimensions will be flattened

Return type None

MaxMetric

class torchmetrics.MaxMetric(nan_strategy='warn', compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Aggregate a stream of value into their maximum value.

Parameters

• nan_strategy¶ (Union[str, float]) – options: - 'error': if any nan values are en-
counted will give a RuntimeError - 'warn': if any nan values are encounted will give a
warning and continue - 'ignore': all nan values are silently removed - a float: if a float is
provided will impude any nan values with this value

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Raises ValueError – If nan_strategy is not one of error, warn, ignore or a float

Example

>>> from torchmetrics import MaxMetric
>>> metric = MaxMetric()
>>> metric.update(1)
>>> metric.update(torch.tensor([2, 3]))
>>> metric.compute()
tensor(3.)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

update(value)
Update state with data.

Parameters value¶ (Union[float, Tensor]) – Either a float or tensor containing data. Addi-
tional tensor dimensions will be flattened

Return type None

28 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

MeanMetric

class torchmetrics.MeanMetric(nan_strategy='warn', compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Aggregate a stream of value into their mean value.

Parameters nan_strategy¶ (Union[str, float]) –

options:

• 'error': if any nan values are encounted will give a RuntimeError

• 'warn': if any nan values are encounted will give a warning and continue

• 'ignore': all nan values are silently removed

• a float: if a float is provided will impude any nan values with this value

compute_on_step: Forward only calls update() and returns None if this is set to False. default:
True

dist_sync_on_step: Synchronize metric state across processes at each forward() before re-
turning the value at the step.

process_group: Specify the process group on which synchronization is called. default: None
(which selects the entire world)

dist_sync_fn: Callback that performs the allgather operation on the metric state. When None,
DDP will be used to perform the allgather.

Raises ValueError – If nan_strategy is not one of error, warn, ignore or a float

Example

>>> from torchmetrics import MeanMetric
>>> metric = MeanMetric()
>>> metric.update(1)
>>> metric.update(torch.tensor([2, 3]))
>>> metric.compute()
tensor([2.])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Compute the aggregated value.

Return type Tensor

update(value, weight=1.0)
Update state with data.

Parameters

• value¶ (Union[float, Tensor]) – Either a float or tensor containing data. Additional
tensor dimensions will be flattened

• weight¶ (Union[float, Tensor]) – Either a float or tensor containing weights for calcu-
lating the average. Shape of weight should be able to broadcast with the shape of value.
Default to 1.0 corresponding to simple harmonic average.

Return type None

2.5. Module metrics 29

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

MinMetric

class torchmetrics.MinMetric(nan_strategy='warn', compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Aggregate a stream of value into their minimum value.

Parameters

• nan_strategy¶ (Union[str, float]) – options: - 'error': if any nan values are en-
counted will give a RuntimeError - 'warn': if any nan values are encounted will give a
warning and continue - 'ignore': all nan values are silently removed - a float: if a float is
provided will impude any nan values with this value

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Raises ValueError – If nan_strategy is not one of error, warn, ignore or a float

Example

>>> from torchmetrics import MinMetric
>>> metric = MinMetric()
>>> metric.update(1)
>>> metric.update(torch.tensor([2, 3]))
>>> metric.compute()
tensor(1.)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

update(value)
Update state with data.

Parameters value¶ (Union[float, Tensor]) – Either a float or tensor containing data. Addi-
tional tensor dimensions will be flattened

Return type None

SumMetric

class torchmetrics.SumMetric(nan_strategy='warn', compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Aggregate a stream of value into their sum.

Parameters

• nan_strategy¶ (Union[str, float]) – options: - 'error': if any nan values are en-
counted will give a RuntimeError - 'warn': if any nan values are encounted will give a
warning and continue - 'ignore': all nan values are silently removed - a float: if a float is
provided will impude any nan values with this value

30 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

PyTorch-Metrics Documentation, Release 0.6.2

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Raises ValueError – If nan_strategy is not one of error, warn, ignore or a float

Example

>>> from torchmetrics import SumMetric
>>> metric = SumMetric()
>>> metric.update(1)
>>> metric.update(torch.tensor([2, 3]))
>>> metric.compute()
tensor(6.)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

update(value)
Update state with data.

Parameters value¶ (Union[float, Tensor]) – Either a float or tensor containing data. Addi-
tional tensor dimensions will be flattened

Return type None

2.5.3 Audio Metrics

About Audio Metrics

For the purposes of audio metrics, inputs (predictions, targets) must have the same size. If the input is 1D tensors the
output will be a scalar. If the input is multi-dimensional with shape [...,time] the metric will be computed over the
time dimension.

>>> import torch
>>> from torchmetrics import SNR
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> snr = SNR()
>>> snr_val = snr(preds, target)
>>> snr_val
tensor(16.1805)

2.5. Module metrics 31

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

PESQ

class torchmetrics.PESQ(fs, mode, compute_on_step=True, dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

This is a wrapper for the pesq package [1]. . Note that input will be moved to cpu to perform the metric calculation.

Note: using this metrics requires you to have pesq install. Either install as pip install
torchmetrics[audio] or pip install pesq

Forward accepts

• preds: shape [...,time]

• target: shape [...,time]

Parameters

• fs¶ (int) – sampling frequency, should be 16000 or 8000 (Hz)

• mode¶ (str) – ‘wb’ (wide-band) or ‘nb’ (narrow-band)

• keep_same_device¶ – whether to move the pesq value to the device of preds

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable[[Tensor], Tensor]]) – Callback that performs the
allgather operation on the metric state. When None, DDP will be used to perform the all-
gather

Raises

• ValueError – If peqs package is not installed

• ValueError – If fs is not either 8000 or 16000

• ValueError – If mode is not either "wb" or "nb"

Example

>>> from torchmetrics.audio import PESQ
>>> import torch
>>> g = torch.manual_seed(1)
>>> preds = torch.randn(8000)
>>> target = torch.randn(8000)
>>> nb_pesq = PESQ(8000, 'nb')
>>> nb_pesq(preds, target)
tensor(2.2076)
>>> wb_pesq = PESQ(16000, 'wb')
>>> wb_pesq(preds, target)
tensor(1.7359)

32 Chapter 2. More reading

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

References

[1] https://github.com/ludlows/python-pesq

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes average PESQ.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

PIT

class torchmetrics.PIT(metric_func, eval_func='max', compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None, **kwargs)

Permutation invariant training (PIT). The PIT implements the famous Permutation Invariant Training method.

[1] in speech separation field in order to calculate audio metrics in a permutation invariant way.

Forward accepts

• preds: shape [batch, spk, ...]

• target: shape [batch, spk, ...]

Parameters

• metric_func¶ (Callable) – a metric function accept a batch of target and estimate, i.e.
metric_func(preds[:, i, . . .], target[:, j, . . .]), and returns a batch of metric tensors [batch]

• eval_func¶ (str) – the function to find the best permutation, can be ‘min’ or ‘max’, i.e.
the smaller the better or the larger the better.

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable[[Tensor], Tensor]]) – Callback that performs the
allgather operation on the metric state. When None, DDP will be used to perform the all-
gather.

• kwargs¶ (Dict[str, Any]) – additional args for metric_func

Returns average PIT metric

2.5. Module metrics 33

https://github.com/ludlows/python-pesq
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> import torch
>>> from torchmetrics import PIT
>>> from torchmetrics.functional import si_snr
>>> _ = torch.manual_seed(42)
>>> preds = torch.randn(3, 2, 5) # [batch, spk, time]
>>> target = torch.randn(3, 2, 5) # [batch, spk, time]
>>> pit = PIT(si_snr, 'max')
>>> pit(preds, target)
tensor(-2.1065)

Reference: [1] D. Yu, M. Kolbaek, Z.-H. Tan, J. Jensen, Permutation invariant training of deep models for
speaker-independent multi-talker speech separation, in: 2017 IEEE Int. Conf. Acoust. Speech Signal
Process. ICASSP, IEEE, New Orleans, LA, 2017: pp. 241–245. https://doi.org/10.1109/ICASSP.2017.
7952154.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes average PIT metric.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

SI_SDR

class torchmetrics.SI_SDR(zero_mean=False, compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Scale-invariant signal-to-distortion ratio (SI-SDR). The SI-SDR value is in general considered an overall measure
of how good a source sound.

Forward accepts

• preds: shape [...,time]

• target: shape [...,time]

Parameters

• zero_mean¶ (bool) – if to zero mean target and preds or not

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

34 Chapter 2. More reading

https://doi.org/10.1109/ICASSP.2017.7952154
https://doi.org/10.1109/ICASSP.2017.7952154
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable[[Tensor], Tensor]]) – Callback that performs the
allgather operation on the metric state. When None, DDP will be used to perform the all-
gather.

Raises TypeError – if target and preds have a different shape

Returns average si-sdr value

Example

>>> import torch
>>> from torchmetrics import SI_SDR
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> si_sdr = SI_SDR()
>>> si_sdr_val = si_sdr(preds, target)
>>> si_sdr_val
tensor(18.4030)

References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 2019.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes average SI-SDR.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

SI_SNR

class torchmetrics.SI_SNR(compute_on_step=True, dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Scale-invariant signal-to-noise ratio (SI-SNR).

Forward accepts

• preds: shape [...,time]

• target: shape [...,time]

Parameters

2.5. Module metrics 35

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#TypeError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable[[Tensor], Tensor]]) – Callback that performs the
allgather operation on the metric state. When None, DDP will be used to perform the all-
gather.

Raises TypeError – if target and preds have a different shape

Returns average si-snr value

Example

>>> import torch
>>> from torchmetrics import SI_SNR
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> si_snr = SI_SNR()
>>> si_snr_val = si_snr(preds, target)
>>> si_snr_val
tensor(15.0918)

References

[1] Y. Luo and N. Mesgarani, “TaSNet: Time-Domain Audio Separation Network for Real-Time, Single-Channel
Speech Separation,” 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2018, pp. 696-700, doi: 10.1109/ICASSP.2018.8462116.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes average SI-SNR.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

36 Chapter 2. More reading

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#TypeError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

SNR

class torchmetrics.SNR(zero_mean=False, compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Signal-to-noise ratio (SNR):

SNR =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒

where 𝑃 denotes the power of each signal. The SNR metric compares the level of the desired signal to the level
of background noise. Therefore, a high value of SNR means that the audio is clear.

Forward accepts

• preds: shape [..., time]

• target: shape [..., time]

Parameters

• zero_mean¶ (bool) – if to zero mean target and preds or not

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable[[Tensor], Tensor]]) – Callback that performs the
allgather operation on the metric state. When None, DDP will be used to perform the all-
gather.

Raises TypeError – if target and preds have a different shape

Returns average snr value

Example

>>> import torch
>>> from torchmetrics import SNR
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> snr = SNR()
>>> snr_val = snr(preds, target)
>>> snr_val
tensor(16.1805)

2.5. Module metrics 37

https://en.wikipedia.org/wiki/Signal-to-noise_ratio
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#TypeError

PyTorch-Metrics Documentation, Release 0.6.2

References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 2019.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes average SNR.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

STOI

class torchmetrics.STOI(fs, extended=False, compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

STOI (Short Term Objective Intelligibility, see [2,3]), a wrapper for the pystoi package [1]. Note that input will
be moved to cpu to perform the metric calculation.

Intelligibility measure which is highly correlated with the intelligibility of degraded speech signals, e.g., due to
additive noise, single/multi-channel noise reduction, binary masking and vocoded speech as in CI simulations.
The STOI-measure is intrusive, i.e., a function of the clean and degraded speech signals. STOI may be a good
alternative to the speech intelligibility index (SII) or the speech transmission index (STI), when you are interested
in the effect of nonlinear processing to noisy speech, e.g., noise reduction, binary masking algorithms, on speech
intelligibility. Description taken from [Cees Taal’s website](http://www.ceestaal.nl/code/).

Note: using this metrics requires you to have pystoi install. Either install as pip install
torchmetrics[audio] or pip install pystoi

Forward accepts

• preds: shape [...,time]

• target: shape [...,time]

Parameters

• fs¶ (int) – sampling frequency (Hz)

• extended¶ (bool) – whether to use the extended STOI described in [4]

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

38 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
http://www.ceestaal.nl/code/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

PyTorch-Metrics Documentation, Release 0.6.2

• dist_sync_fn¶ (Optional[Callable[[Tensor], Tensor]]) – Callback that performs the
allgather operation on the metric state. When None, DDP will be used to perform the all-
gather.

Returns average STOI value

Raises ModuleNotFoundError – If pystoi package is not installed

Example

>>> from torchmetrics.audio import STOI
>>> import torch
>>> g = torch.manual_seed(1)
>>> preds = torch.randn(8000)
>>> target = torch.randn(8000)
>>> stoi = STOI(8000, False)
>>> stoi(preds, target)
tensor(-0.0100)

References

[1] https://github.com/mpariente/pystoi

[2] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen ‘A Short-Time Objective Intelligibility Measure for Time-
Frequency Weighted Noisy Speech’, ICASSP 2010, Texas, Dallas.

[3] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen ‘An Algorithm for Intelligibility Prediction of Time-
Frequency Weighted Noisy Speech’, IEEE Transactions on Audio, Speech, and Language Processing, 2011.

[4] J. Jensen and C. H. Taal, ‘An Algorithm for Predicting the Intelligibility of Speech Masked by Modulated
Noise Maskers’, IEEE Transactions on Audio, Speech and Language Processing, 2016.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes average STOI.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

2.5. Module metrics 39

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError
https://github.com/mpariente/pystoi
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

2.5.4 Classification Metrics

Input types

For the purposes of classification metrics, inputs (predictions and targets) are split into these categories (N stands for
the batch size and C for number of classes):

Table 1: *dtype binary means integers that are either 0 or 1
Type preds shape preds dtype target shape target dtype
Binary (N,) float (N,) binary*
Multi-class (N,) int (N,) int
Multi-class with logits or probabili-
ties

(N, C) float (N,) int

Multi-label (N, . . .) float (N, . . .) binary*
Multi-dimensional multi-class (N, . . .) int (N, . . .) int
Multi-dimensional multi-class with
logits or probabilities

(N, C, . . .) float (N, . . .) int

Note: All dimensions of size 1 (except N) are “squeezed out” at the beginning, so that, for example, a tensor of shape
(N, 1) is treated as (N,).

When predictions or targets are integers, it is assumed that class labels start at 0, i.e. the possible class labels are 0, 1,
2, 3, etc. Below are some examples of different input types

Binary inputs
binary_preds = torch.tensor([0.6, 0.1, 0.9])
binary_target = torch.tensor([1, 0, 2])

Multi-class inputs
mc_preds = torch.tensor([0, 2, 1])
mc_target = torch.tensor([0, 1, 2])

Multi-class inputs with probabilities
mc_preds_probs = torch.tensor([[0.8, 0.2, 0], [0.1, 0.2, 0.7], [0.3, 0.6, 0.1]])
mc_target_probs = torch.tensor([0, 1, 2])

Multi-label inputs
ml_preds = torch.tensor([[0.2, 0.8, 0.9], [0.5, 0.6, 0.1], [0.3, 0.1, 0.1]])
ml_target = torch.tensor([[0, 1, 1], [1, 0, 0], [0, 0, 0]])

Using the multiclass parameter

In some cases, you might have inputs which appear to be (multi-dimensional) multi-class but are actually binary/multi-
label - for example, if both predictions and targets are integer (binary) tensors. Or it could be the other way around,
you want to treat binary/multi-label inputs as 2-class (multi-dimensional) multi-class inputs.

For these cases, the metrics where this distinction would make a difference, expose the multiclass argument. Let’s
see how this is used on the example of StatScores metric.

First, let’s consider the case with label predictions with 2 classes, which we want to treat as binary.

40 Chapter 2. More reading

PyTorch-Metrics Documentation, Release 0.6.2

from torchmetrics.functional import stat_scores

These inputs are supposed to be binary, but appear as multi-class
preds = torch.tensor([0, 1, 0])
target = torch.tensor([1, 1, 0])

As you can see below, by default the inputs are treated as multi-class. We can set multiclass=False to treat the
inputs as binary - which is the same as converting the predictions to float beforehand.

>>> stat_scores(preds, target, reduce='macro', num_classes=2)
tensor([[1, 1, 1, 0, 1],

[1, 0, 1, 1, 2]])
>>> stat_scores(preds, target, reduce='macro', num_classes=1, multiclass=False)
tensor([[1, 0, 1, 1, 2]])
>>> stat_scores(preds.float(), target, reduce='macro', num_classes=1)
tensor([[1, 0, 1, 1, 2]])

Next, consider the opposite example: inputs are binary (as predictions are probabilities), but we would like to treat
them as 2-class multi-class, to obtain the metric for both classes.

preds = torch.tensor([0.2, 0.7, 0.3])
target = torch.tensor([1, 1, 0])

In this case we can set multiclass=True, to treat the inputs as multi-class.

>>> stat_scores(preds, target, reduce='macro', num_classes=1)
tensor([[1, 0, 1, 1, 2]])
>>> stat_scores(preds, target, reduce='macro', num_classes=2, multiclass=True)
tensor([[1, 1, 1, 0, 1],

[1, 0, 1, 1, 2]])

Accuracy

class torchmetrics.Accuracy(threshold=0.5, num_classes=None, average='micro', mdmc_average='global',
ignore_index=None, top_k=None, multiclass=None, subset_accuracy=False,
compute_on_step=True, dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Computes Accuracy:

Accuracy =
1

𝑁

𝑁∑︁
𝑖

1(𝑦𝑖 = 𝑦𝑖)

Where 𝑦 is a tensor of target values, and 𝑦 is a tensor of predictions.

For multi-class and multi-dimensional multi-class data with probability or logits predictions, the parameter
top_k generalizes this metric to a Top-K accuracy metric: for each sample the top-K highest probability or
logit score items are considered to find the correct label.

For multi-label and multi-dimensional multi-class inputs, this metric computes the “global” accuracy by default,
which counts all labels or sub-samples separately. This can be changed to subset accuracy (which requires all
labels or sub-samples in the sample to be correctly predicted) by setting subset_accuracy=True.

Accepts all input types listed in Input types.

Parameters

2.5. Module metrics 41

https://en.wikipedia.org/wiki/Accuracy_and_precision

PyTorch-Metrics Documentation, Release 0.6.2

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tp + fn).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

Note: If 'none' and a given class doesn’t occur in the preds or target, the value for the
class will be nan.

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

42 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

• subset_accuracy¶ (bool) – Whether to compute subset accuracy for multi-label and
multi-dimensional multi-class inputs (has no effect for other input types).

– For multi-label inputs, if the parameter is set to True, then all labels for each sample must
be correctly predicted for the sample to count as correct. If it is set to False, then all labels
are counted separately - this is equivalent to flattening inputs beforehand (i.e. preds =
preds.flatten() and same for target).

– For multi-dimensional multi-class inputs, if the parameter is set to True, then all sub-
sample (on the extra axis) must be correct for the sample to be counted as correct. If it is
set to False, then all sub-samples are counter separately - this is equivalent, in the case of
label predictions, to flattening the inputs beforehand (i.e. preds = preds.flatten()
and same for target). Note that the top_k parameter still applies in both cases, if set.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather

Raises

• ValueError – If top_k is not an integer larger than 0.

• ValueError – If average is none of "micro", "macro", "weighted", "samples",
"none", None.

• ValueError – If two different input modes are provided, eg. using multi-label with
multi-class.

• ValueError – If top_k parameter is set for multi-label inputs.

Example

>>> import torch
>>> from torchmetrics import Accuracy
>>> target = torch.tensor([0, 1, 2, 3])
>>> preds = torch.tensor([0, 2, 1, 3])
>>> accuracy = Accuracy()
>>> accuracy(preds, target)
tensor(0.5000)

>>> target = torch.tensor([0, 1, 2])
>>> preds = torch.tensor([[0.1, 0.9, 0], [0.3, 0.1, 0.6], [0.2, 0.5, 0.3]])
>>> accuracy = Accuracy(top_k=2)
>>> accuracy(preds, target)
tensor(0.6667)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes accuracy based on inputs passed in to update previously.

2.5. Module metrics 43

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

Return type Tensor

update(preds, target)
Update state with predictions and targets. See Input types for more information on input types.

Parameters

• preds¶ (Tensor) – Predictions from model (logits, probabilities, or labels)

• target¶ (Tensor) – Ground truth labels

Return type None

AveragePrecision

class torchmetrics.AveragePrecision(num_classes=None, pos_label=None, average='macro',
compute_on_step=True, dist_sync_on_step=False,
process_group=None)

Computes the average precision score, which summarises the precision recall curve into one number. Works for
both binary and multiclass problems. In the case of multiclass, the values will be calculated based on a one-
vs-the-rest approach.

Forward accepts

• preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor with probabilities, where C
is the number of classes.

• target (long tensor): (N, ...) with integer labels

Parameters

• num_classes¶ (Optional[int]) – integer with number of classes. Not nessesary to pro-
vide for binary problems.

• pos_label¶ (Optional[int]) – integer determining the positive class. Default is None
which for binary problem is translate to 1. For multiclass problems this argument should not
be set as we iteratively change it in the range [0,num_classes-1]

• average¶ (Optional[str]) – defines the reduction that is applied in the case of multiclass
and multilabel input. Should be one of the following:

– 'macro' [default]: Calculate the metric for each class separately, and average the metrics
across classes (with equal weights for each class).

– 'micro': Calculate the metric globally, across all samples and classes. Cannot be used
with multiclass input.

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support.

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

44 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

PyTorch-Metrics Documentation, Release 0.6.2

Example (binary case):

>>> from torchmetrics import AveragePrecision
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 1, 1])
>>> average_precision = AveragePrecision(pos_label=1)
>>> average_precision(pred, target)
tensor(1.)

Example (multiclass case):

>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> average_precision = AveragePrecision(num_classes=5, average=None)
>>> average_precision(pred, target)
[tensor(1.), tensor(1.), tensor(0.2500), tensor(0.2500), tensor(nan)]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Compute the average precision score.

Return type Union[Tensor, List[Tensor]]

Returns tensor with average precision. If multiclass will return list of such tensors, one for each
class

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

AUC

class torchmetrics.AUC(reorder=False, compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Computes Area Under the Curve (AUC) using the trapezoidal rule

Forward accepts two input tensors that should be 1D and have the same number of elements

Parameters

• reorder¶ (bool) – AUC expects its first input to be sorted. If this is not the case, setting
this argument to Truewill use a stable sorting algorithm to sort the input in descending order

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

2.5. Module metrics 45

https://docs.python.org/3/library/typing.html#typing.Union
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather opera-
tion on the metric state. When None, DDP will be used to perform the allgather.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes AUC based on inputs passed in to update previously.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model (probabilities, or labels)

• target¶ (Tensor) – Ground truth labels

Return type None

AUROC

class torchmetrics.AUROC(num_classes=None, pos_label=None, average='macro', max_fpr=None,
compute_on_step=True, dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC). Works for both binary, multilabel
and multiclass problems. In the case of multiclass, the values will be calculated based on a one-vs-the-rest
approach.

Forward accepts

• preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor with probabilities, where C
is the number of classes.

• target (long tensor): (N, ...) or (N, C, ...) with integer labels

For non-binary input, if the preds and target tensor have the same size the input will be interpretated as
multilabel and if preds have one dimension more than the target tensor the input will be interpretated as
multiclass.

Note: If either the positive class or negative class is completly missing in the target tensor, the auroc score is
meaningless in this case and a score of 0 will be returned together with an warning.

Parameters

• num_classes¶ (Optional[int]) – integer with number of classes for multi-label and mul-
ticlass problems. Should be set to None for binary problems

• pos_label¶ (Optional[int]) – integer determining the positive class. Default is None
which for binary problem is translate to 1. For multiclass problems this argument should not
be set as we iteratively change it in the range [0,num_classes-1]

• average¶ (Optional[str]) –

– 'micro' computes metric globally. Only works for multilabel problems

– 'macro' computes metric for each class and uniformly averages them

46 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Further_interpretations
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

– 'weighted' computes metric for each class and does a weighted-average, where each
class is weighted by their support (accounts for class imbalance)

– None computes and returns the metric per class

• max_fpr¶ (Optional[float]) – If not None, calculates standardized partial AUC over the
range [0, max_fpr]. Should be a float between 0 and 1.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather

Raises

• ValueError – If average is none of None, "macro" or "weighted".

• ValueError – If max_fpr is not a float in the range (0, 1].

• RuntimeError – If PyTorch version is below 1.6 since max_fpr requires torch.
bucketize which is not available below 1.6.

• ValueError – If the mode of data (binary, multi-label, multi-class) changes between
batches.

Example (binary case):

>>> from torchmetrics import AUROC
>>> preds = torch.tensor([0.13, 0.26, 0.08, 0.19, 0.34])
>>> target = torch.tensor([0, 0, 1, 1, 1])
>>> auroc = AUROC(pos_label=1)
>>> auroc(preds, target)
tensor(0.5000)

Example (multiclass case):

>>> preds = torch.tensor([[0.90, 0.05, 0.05],
... [0.05, 0.90, 0.05],
... [0.05, 0.05, 0.90],
... [0.85, 0.05, 0.10],
... [0.10, 0.10, 0.80]])
>>> target = torch.tensor([0, 1, 1, 2, 2])
>>> auroc = AUROC(num_classes=3)
>>> auroc(preds, target)
tensor(0.7778)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes AUROC based on inputs passed in to update previously.

Return type Tensor

2.5. Module metrics 47

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model (probabilities, or labels)

• target¶ (Tensor) – Ground truth labels

Return type None

BinnedAveragePrecision

class torchmetrics.BinnedAveragePrecision(num_classes, thresholds=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None)

Computes the average precision score, which summarises the precision recall curve into one number. Works for
both binary and multiclass problems. In the case of multiclass, the values will be calculated based on a one-
vs-the-rest approach.

Computation is performed in constant-memory by computing precision and recall for thresholds buck-
ets/thresholds (evenly distributed between 0 and 1).

Forward accepts

• preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor with probabilities, where C
is the number of classes.

• target (long tensor): (N, ...) with integer labels

Parameters

• num_classes¶ (int) – integer with number of classes. Not nessesary to provide for binary
problems.

• thresholds¶ (Union[int, Tensor, List[float], None]) – list or tensor with specific
thresholds or a number of bins from linear sampling. It is used for computation will lead
to more detailed curve and accurate estimates, but will be slower and consume more mem-
ory

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Raises ValueError – If thresholds is not a list or tensor

Example (binary case):

>>> from torchmetrics import BinnedAveragePrecision
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 1, 1])
>>> average_precision = BinnedAveragePrecision(num_classes=1, thresholds=10)
>>> average_precision(pred, target)
tensor(1.0000)

Example (multiclass case):

48 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> average_precision = BinnedAveragePrecision(num_classes=5, thresholds=10)
>>> average_precision(pred, target)
[tensor(1.0000), tensor(1.0000), tensor(0.2500), tensor(0.2500), tensor(-0.)]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Returns float tensor of size n_classes.

Return type Union[List[Tensor], Tensor]

BinnedPrecisionRecallCurve

class torchmetrics.BinnedPrecisionRecallCurve(num_classes, thresholds=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None)

Computes precision-recall pairs for different thresholds. Works for both binary and multiclass problems. In the
case of multiclass, the values will be calculated based on a one-vs-the-rest approach.

Computation is performed in constant-memory by computing precision and recall for thresholds buck-
ets/thresholds (evenly distributed between 0 and 1).

Forward accepts

• preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor with probabilities, where C
is the number of classes.

• target (long tensor): (N, ...) or (N, C, ...) with integer labels

Parameters

• num_classes¶ (int) – integer with number of classes. For binary, set to 1.

• thresholds¶ (Union[int, Tensor, List[float], None]) – list or tensor with specific
thresholds or a number of bins from linear sampling. It is used for computation will lead
to more detailed curve and accurate estimates, but will be slower and consume more mem-
ory.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Raises ValueError – If thresholds is not a int, list or tensor

Example (binary case):

>>> from torchmetrics import BinnedPrecisionRecallCurve
>>> pred = torch.tensor([0, 0.1, 0.8, 0.4])
>>> target = torch.tensor([0, 1, 1, 0])

(continues on next page)

2.5. Module metrics 49

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

(continued from previous page)

>>> pr_curve = BinnedPrecisionRecallCurve(num_classes=1, thresholds=5)
>>> precision, recall, thresholds = pr_curve(pred, target)
>>> precision
tensor([0.5000, 0.5000, 1.0000, 1.0000, 1.0000, 1.0000])
>>> recall
tensor([1.0000, 0.5000, 0.5000, 0.5000, 0.0000, 0.0000])
>>> thresholds
tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])

Example (multiclass case):

>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> pr_curve = BinnedPrecisionRecallCurve(num_classes=5, thresholds=3)
>>> precision, recall, thresholds = pr_curve(pred, target)
>>> precision
[tensor([0.2500, 1.0000, 1.0000, 1.0000]),
tensor([0.2500, 1.0000, 1.0000, 1.0000]),
tensor([2.5000e-01, 1.0000e-06, 1.0000e+00, 1.0000e+00]),
tensor([2.5000e-01, 1.0000e-06, 1.0000e+00, 1.0000e+00]),
tensor([2.5000e-07, 1.0000e+00, 1.0000e+00, 1.0000e+00])]
>>> recall
[tensor([1.0000, 1.0000, 0.0000, 0.0000]),
tensor([1.0000, 1.0000, 0.0000, 0.0000]),
tensor([1.0000, 0.0000, 0.0000, 0.0000]),
tensor([1.0000, 0.0000, 0.0000, 0.0000]),
tensor([0., 0., 0., 0.])]
>>> thresholds
[tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000])]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Returns float tensor of size n_classes.

Return type Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor],
List[Tensor]]]

update(preds, target)

Args preds: (n_samples, n_classes) tensor target: (n_samples, n_classes) tensor

Return type None

50 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

BinnedRecallAtFixedPrecision

class torchmetrics.BinnedRecallAtFixedPrecision(num_classes, min_precision, thresholds=None,
compute_on_step=True, dist_sync_on_step=False,
process_group=None)

Computes the higest possible recall value given the minimum precision thresholds provided.

Computation is performed in constant-memory by computing precision and recall for thresholds buck-
ets/thresholds (evenly distributed between 0 and 1).

Forward accepts

• preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor with probabilities, where C
is the number of classes.

• target (long tensor): (N, ...) with integer labels

Parameters

• num_classes¶ (int) – integer with number of classes. Provide 1 for for binary problems.

• min_precision¶ (float) – float value specifying minimum precision threshold.

• thresholds¶ (Union[int, Tensor, List[float], None]) – list or tensor with specific
thresholds or a number of bins from linear sampling. It is used for computation will lead
to more detailed curve and accurate estimates, but will be slower and consume more mem-
ory

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Raises ValueError – If thresholds is not a list or tensor

Example (binary case):

>>> from torchmetrics import BinnedRecallAtFixedPrecision
>>> pred = torch.tensor([0, 0.2, 0.5, 0.8])
>>> target = torch.tensor([0, 1, 1, 0])
>>> average_precision = BinnedRecallAtFixedPrecision(num_classes=1,␣
→˓thresholds=10, min_precision=0.5)
>>> average_precision(pred, target)
(tensor(1.0000), tensor(0.1111))

Example (multiclass case):

>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> average_precision = BinnedRecallAtFixedPrecision(num_classes=5,␣
→˓thresholds=10, min_precision=0.5)
>>> average_precision(pred, target)
(tensor([1.0000, 1.0000, 0.0000, 0.0000, 0.0000]),
tensor([6.6667e-01, 6.6667e-01, 1.0000e+06, 1.0000e+06, 1.0000e+06]))

2.5. Module metrics 51

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Returns float tensor of size n_classes.

Return type Tuple[Tensor, Tensor]

CalibrationError

class torchmetrics.CalibrationError(n_bins=15, norm='l1', compute_on_step=False,
dist_sync_on_step=False, process_group=None)

Computes the Top-label Calibration Error Three different norms are implemented, each corresponding to varia-
tions on the calibration error metric.

L1 norm (Expected Calibration Error)

ECE =
1

𝑁

𝑁∑︁
𝑖

‖(𝑝𝑖 − 𝑐𝑖)‖

Infinity norm (Maximum Calibration Error)

RMSCE = max
𝑖

(𝑝𝑖 − 𝑐𝑖)

L2 norm (Root Mean Square Calibration Error)

MCE =
1

𝑁

𝑁∑︁
𝑖

(𝑝𝑖 − 𝑐𝑖)
2

Where 𝑝𝑖 is the top-1 prediction accuracy in bin i and 𝑐𝑖 is the average confidence of predictions in bin i.

Note: L2-norm debiasing is not yet supported.

Parameters

• n_bins¶ (int) – Number of bins to use when computing probabilites and accuracies.

• norm¶ (str) – Norm used to compare empirical and expected probability bins. Defaults to
“l1”, or Expected Calibration Error.

• debias¶ – Applies debiasing term, only implemented for l2 norm. Defaults to True.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes calibration error across all confidences and accuracies.

Returns Calibration error across previously collected examples.

Return type Tensor

52 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Tuple
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/pdf/1909.10155.pdf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

PyTorch-Metrics Documentation, Release 0.6.2

update(preds, target)
Computes top-level confidences and accuracies for the input probabilites and appends them to internal state.

Parameters

• preds¶ (Tensor) – Model output probabilities.

• target¶ (Tensor) – Ground-truth target class labels.

Return type None

CohenKappa

class torchmetrics.CohenKappa(num_classes, weights=None, threshold=0.5, compute_on_step=True,
dist_sync_on_step=False, process_group=None)

Calculates Cohen’s kappa score that measures inter-annotator agreement. It is defined as

𝜅 = (𝑝𝑜 − 𝑝𝑒)/(1 − 𝑝𝑒)

where 𝑝𝑜 is the empirical probability of agreement and 𝑝𝑒 is the expected agreement when both annotators assign
labels randomly. Note that 𝑝𝑒 is estimated using a per-annotator empirical prior over the class labels.

Works with binary, multiclass, and multilabel data. Accepts probabilities from a model output or integer class
values in prediction. Works with multi-dimensional preds and target.

Forward accepts

• preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

• target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument to
convert into integer labels. This is the case for binary and multi-label probabilities or logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

Parameters

• num_classes¶ (int) – Number of classes in the dataset.

• weights¶ (Optional[str]) – Weighting type to calculate the score. Choose from - None or
'none': no weighting - 'linear': linear weighting - 'quadratic': quadratic weighting

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

2.5. Module metrics 53

https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics import CohenKappa
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> cohenkappa = CohenKappa(num_classes=2)
>>> cohenkappa(preds, target)
tensor(0.5000)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes cohen kappa score.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

ConfusionMatrix

class torchmetrics.ConfusionMatrix(num_classes, normalize=None, threshold=0.5, multilabel=False,
compute_on_step=True, dist_sync_on_step=False,
process_group=None)

Computes the confusion matrix. Works with binary, multiclass, and multilabel data. Accepts probabilities or
logits from a model output or integer class values in prediction. Works with multi-dimensional preds and target,
but it should be noted that additional dimensions will be flattened.

Forward accepts

• preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

• target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument to
convert into integer labels. This is the case for binary and multi-label probabilities or logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

If working with multilabel data, setting the is_multilabel argument to True will make sure that a confusion matrix
gets calculated per label.

Parameters

• num_classes¶ (int) – Number of classes in the dataset.

• normalize¶ (Optional[str]) – Normalization mode for confusion matrix. Choose from

– None or 'none': no normalization (default)

– 'true': normalization over the targets (most commonly used)

– 'pred': normalization over the predictions

– 'all': normalization over the whole matrix

54 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Confusion_matrix#Table_of_confusion
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• multilabel¶ (bool) – determines if data is multilabel or not.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Example (binary data):

>>> from torchmetrics import ConfusionMatrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> confmat = ConfusionMatrix(num_classes=2)
>>> confmat(preds, target)
tensor([[2., 0.],

[1., 1.]])

Example (multiclass data):

>>> target = torch.tensor([2, 1, 0, 0])
>>> preds = torch.tensor([2, 1, 0, 1])
>>> confmat = ConfusionMatrix(num_classes=3)
>>> confmat(preds, target)
tensor([[1., 1., 0.],

[0., 1., 0.],
[0., 0., 1.]])

Example (multilabel data):

>>> target = torch.tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = torch.tensor([[0, 0, 1], [1, 0, 1]])
>>> confmat = ConfusionMatrix(num_classes=3, multilabel=True)
>>> confmat(preds, target)
tensor([[[1., 0.], [0., 1.]],

[[1., 0.], [1., 0.]],
[[0., 1.], [0., 1.]]])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes confusion matrix.

Return type Tensor

Returns If multilabel=False this will be a [n_classes, n_classes] tensor and if multilabel=True
this will be a [n_classes, 2, 2] tensor

update(preds, target)
Update state with predictions and targets.

Parameters

2.5. Module metrics 55

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

F1

class torchmetrics.F1(num_classes=None, threshold=0.5, average='micro', mdmc_average=None,
ignore_index=None, top_k=None, multiclass=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Computes F1 metric. F1 metrics correspond to a harmonic mean of the precision and recall scores.

Works with binary, multiclass, and multilabel data. Accepts logits or probabilities from a model output or integer
class values in prediction. Works with multi-dimensional preds and target.

Forward accepts

• preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

• target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument. This
is the case for binary and multi-label logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

Parameters

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tp + fn).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

56 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Example

>>> from torchmetrics import F1
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
>>> f1 = F1(num_classes=3)
>>> f1(preds, target)
tensor(0.3333)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

2.5. Module metrics 57

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable

PyTorch-Metrics Documentation, Release 0.6.2

FBeta

class torchmetrics.FBeta(num_classes=None, beta=1.0, threshold=0.5, average='micro',
mdmc_average=None, ignore_index=None, top_k=None, multiclass=None,
compute_on_step=True, dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Computes F-score, specifically:

𝐹𝛽 = (1 + 𝛽2) * precision * recall
(𝛽2 * precision) + recall

Where 𝛽 is some positive real factor. Works with binary, multiclass, and multilabel data. Accepts logit scores
or probabilities from a model output or integer class values in prediction. Works with multi-dimensional preds
and target.

Forward accepts

• preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

• target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument to
convert into integer labels. This is the case for binary and multi-label logits and probabilities.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

Parameters

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

• beta¶ (float) – Beta coefficient in the F measure.

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tp + fn).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

Note: If 'none' and a given class doesn’t occur in the preds or target, the value for the
class will be nan.

58 Chapter 2. More reading

https://en.wikipedia.org/wiki/F-score
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Raises ValueError – If average is none of "micro", "macro", "weighted", "none", None.

Example

>>> from torchmetrics import FBeta
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
>>> f_beta = FBeta(num_classes=3, beta=0.5)
>>> f_beta(preds, target)
tensor(0.3333)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes fbeta over state.

Return type Tensor

2.5. Module metrics 59

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

HammingDistance

class torchmetrics.HammingDistance(threshold=0.5, compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Computes the average Hamming distance (also known as Hamming loss) between targets and predictions:

Hamming distance =
1

𝑁 · 𝐿

𝑁∑︁
𝑖

𝐿∑︁
𝑙

1(𝑦𝑖𝑙 ̸= 𝑦𝑖𝑙)

Where 𝑦 is a tensor of target values, 𝑦 is a tensor of predictions, and ∙𝑖𝑙 refers to the 𝑙-th label of the 𝑖-th sample
of that tensor.

This is the same as 1-accuracy for binary data, while for all other types of inputs it treats each possible label
separately - meaning that, for example, multi-class data is treated as if it were multi-label.

Accepts all input types listed in Input types.

Parameters

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the all gather.

Raises ValueError – If threshold is not between 0 and 1.

Example

>>> from torchmetrics import HammingDistance
>>> target = torch.tensor([[0, 1], [1, 1]])
>>> preds = torch.tensor([[0, 1], [0, 1]])
>>> hamming_distance = HammingDistance()
>>> hamming_distance(preds, target)
tensor(0.2500)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes hamming distance based on inputs passed in to update previously.

Return type Tensor

update(preds, target)
Update state with predictions and targets. See Input types for more information on input types.

Parameters

• preds¶ (Tensor) – Predictions from model (probabilities, logits or labels)

60 Chapter 2. More reading

https://en.wikipedia.org/wiki/Hamming_distance
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

• target¶ (Tensor) – Ground truth labels

Return type None

Hinge

class torchmetrics.Hinge(squared=False, multiclass_mode=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Computes the mean Hinge loss, typically used for Support Vector Machines (SVMs). In the binary case it is
defined as:

Hinge loss = max(0, 1 − 𝑦 × 𝑦)

Where 𝑦 ∈ −1, 1 is the target, and 𝑦 ∈ R is the prediction.

In the multi-class case, when multiclass_mode=None (default), multiclass_mode=MulticlassMode.
CRAMMER_SINGER or multiclass_mode="crammer-singer", this metric will compute the multi-class hinge
loss defined by Crammer and Singer as:

Hinge loss = max

(︂
0, 1 − 𝑦𝑦 + max

𝑖̸=𝑦
(𝑦𝑖)

)︂
Where 𝑦 ∈ 0, ...,C is the target class (where C is the number of classes), and 𝑦 ∈ RC is the predicted output per
class.

In the multi-class case when multiclass_mode=MulticlassMode.ONE_VS_ALL or
multiclass_mode='one-vs-all', this metric will use a one-vs-all approach to compute the hinge
loss, giving a vector of C outputs where each entry pits that class against all remaining classes.

This metric can optionally output the mean of the squared hinge loss by setting squared=True

Only accepts inputs with preds shape of (N) (binary) or (N, C) (multi-class) and target shape of (N).

Parameters

• squared¶ (bool) – If True, this will compute the squared hinge loss. Otherwise, computes
the regular hinge loss (default).

• multiclass_mode¶ (Union[str, MulticlassMode, None]) – Which approach to use for
multi-class inputs (has no effect in the binary case). None (default), MulticlassMode.
CRAMMER_SINGER or "crammer-singer", uses the Crammer Singer multi-class hinge loss.
MulticlassMode.ONE_VS_ALL or "one-vs-all" computes the hinge loss in a one-vs-all
fashion.

Raises ValueError – If multiclass_mode is not: None, MulticlassMode.CRAMMER_SINGER,
"crammer-singer", MulticlassMode.ONE_VS_ALL or "one-vs-all".

Example (binary case):

>>> import torch
>>> from torchmetrics import Hinge
>>> target = torch.tensor([0, 1, 1])
>>> preds = torch.tensor([-2.2, 2.4, 0.1])
>>> hinge = Hinge()
>>> hinge(preds, target)
tensor(0.3000)

Example (default / multiclass case):

2.5. Module metrics 61

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Hinge_loss
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

>>> target = torch.tensor([0, 1, 2])
>>> preds = torch.tensor([[-1.0, 0.9, 0.2], [0.5, -1.1, 0.8], [2.2, -0.5, 0.3]])
>>> hinge = Hinge()
>>> hinge(preds, target)
tensor(2.9000)

Example (multiclass example, one vs all mode):

>>> target = torch.tensor([0, 1, 2])
>>> preds = torch.tensor([[-1.0, 0.9, 0.2], [0.5, -1.1, 0.8], [2.2, -0.5, 0.3]])
>>> hinge = Hinge(multiclass_mode="one-vs-all")
>>> hinge(preds, target)
tensor([2.2333, 1.5000, 1.2333])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Override this method to compute the final metric value from state variables synchronized across the dis-
tributed backend.

Return type Tensor

update(preds, target)
Override this method to update the state variables of your metric class.

Return type None

IoU

class torchmetrics.IoU(num_classes, ignore_index=None, absent_score=0.0, threshold=0.5,
reduction='elementwise_mean', compute_on_step=True, dist_sync_on_step=False,
process_group=None)

Computes Intersection over union, or Jaccard index:

𝐽(𝐴,𝐵) =
|𝐴 ∩𝐵|
|𝐴 ∪𝐵|

Where: 𝐴 and 𝐵 are both tensors of the same size, containing integer class values. They may be subject to
conversion from input data (see description below). Note that it is different from box IoU.

Works with binary, multiclass and multi-label data. Accepts probabilities from a model output or integer class
values in prediction. Works with multi-dimensional preds and target.

Forward accepts

• preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

• target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument to
convert into integer labels. This is the case for binary and multi-label probabilities.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

Parameters

• num_classes¶ (int) – Number of classes in the dataset.

62 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Jaccard_index
https://docs.python.org/3/library/functions.html#int

PyTorch-Metrics Documentation, Release 0.6.2

• ignore_index¶ (Optional[int]) – optional int specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. Has
no effect if given an int that is not in the range [0, num_classes-1]. By default, no index is
ignored, and all classes are used.

• absent_score¶ (float) – score to use for an individual class, if no instances of the class
index were present in pred AND no instances of the class index were present in target. For
example, if we have 3 classes, [0, 0] for pred, and [0, 2] for target, then class 1 would be
assigned the absent_score.

• threshold¶ (float) – Threshold value for binary or multi-label probabilities.

• reduction¶ (str) – a method to reduce metric score over labels.

– 'elementwise_mean': takes the mean (default)

– 'sum': takes the sum

– 'none': no reduction will be applied

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Example

>>> from torchmetrics import IoU
>>> target = torch.randint(0, 2, (10, 25, 25))
>>> pred = torch.tensor(target)
>>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15]
>>> iou = IoU(num_classes=2)
>>> iou(pred, target)
tensor(0.9660)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes intersection over union (IoU)

Return type Tensor

KLDivergence

class torchmetrics.KLDivergence(log_prob=False, reduction='mean', compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Computes the KL divergence:

𝐷𝐾𝐿(𝑃 ||𝑄) =
∑︁
𝑥∈𝒳

𝑃 (𝑥) log
𝑃 (𝑥)

𝑄𝑥

Where 𝑃 and 𝑄 are probability distributions where 𝑃 usually represents a distribution over data and 𝑄 is of-
ten a prior or approximation of 𝑃 . It should be noted that the KL divergence is a non-symetrical metric i.e.
𝐷𝐾𝐿(𝑃 ||𝑄) ̸= 𝐷𝐾𝐿(𝑄||𝑃).

2.5. Module metrics 63

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

PyTorch-Metrics Documentation, Release 0.6.2

Parameters

• p¶ – data distribution with shape [N, d]

• q¶ – prior or approximate distribution with shape [N, d]

• log_prob¶ (bool) – bool indicating if input is log-probabilities or probabilities. If given
as probabilities, will normalize to make sure the distributes sum to 1

• reduction¶ (Optional[str]) – Determines how to reduce over the N/batch dimension:

– 'mean' [default]: Averages score across samples

– 'sum': Sum score across samples

– 'none' or None: Returns score per sample

Raises

• TypeError – If log_prob is not an bool

• ValueError – If reduction is not one of 'mean', 'sum', 'none' or None

Note: Half precision is only support on GPU for this metric

Example

>>> import torch
>>> from torchmetrics.functional import kl_divergence
>>> p = torch.tensor([[0.36, 0.48, 0.16]])
>>> q = torch.tensor([[1/3, 1/3, 1/3]])
>>> kl_divergence(p, q)
tensor(0.0853)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Override this method to compute the final metric value from state variables synchronized across the dis-
tributed backend.

Return type Tensor

update(p, q)
Override this method to update the state variables of your metric class.

Return type None

MatthewsCorrcoef

class torchmetrics.MatthewsCorrcoef(num_classes, threshold=0.5, compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Calculates Matthews correlation coefficient that measures the general correlation or quality of a classification.
In the binary case it is defined as:

𝑀𝐶𝐶 =
𝑇𝑃 * 𝑇𝑁 − 𝐹𝑃 * 𝐹𝑁√︀

(𝑇𝑃 + 𝐹𝑃) * (𝑇𝑃 + 𝐹𝑁) * (𝑇𝑁 + 𝐹𝑃) * (𝑇𝑁 + 𝐹𝑁)

where TP, TN, FP and FN are respectively the true postitives, true negatives, false positives and false negatives.
Also works in the case of multi-label or multi-class input.

64 Chapter 2. More reading

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient

PyTorch-Metrics Documentation, Release 0.6.2

Note: This metric produces a multi-dimensional output, so it can not be directly logged.

Forward accepts

• preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

• target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument to
convert into integer labels. This is the case for binary and multi-label probabilities.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

Parameters

• num_classes¶ (int) – Number of classes in the dataset.

• threshold¶ (float) – Threshold value for binary or multi-label probabilites. default: 0.5

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather

Example

>>> from torchmetrics import MatthewsCorrcoef
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> matthews_corrcoef = MatthewsCorrcoef(num_classes=2)
>>> matthews_corrcoef(preds, target)
tensor(0.5774)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes matthews correlation coefficient.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

2.5. Module metrics 65

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

Precision

class torchmetrics.Precision(num_classes=None, threshold=0.5, average='micro', mdmc_average=None,
ignore_index=None, top_k=None, multiclass=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Computes Precision:

Precision =
TP

TP + FP

Where TP and FP represent the number of true positives and false positives respecitively. With the use of top_k
parameter, this metric can generalize to Precision@K.

The reduction method (how the precision scores are aggregated) is controlled by the average parameter, and
additionally by the mdmc_average parameter in the multi-dimensional multi-class case. Accepts all inputs listed
in Input types.

Parameters

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tp + fn).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

66 Chapter 2. More reading

https://en.wikipedia.org/wiki/Precision_and_recall
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Raises ValueError – If average is none of "micro", "macro", "weighted", "samples", "none
", None.

Example

>>> from torchmetrics import Precision
>>> preds = torch.tensor([2, 0, 2, 1])
>>> target = torch.tensor([1, 1, 2, 0])
>>> precision = Precision(average='macro', num_classes=3)
>>> precision(preds, target)
tensor(0.1667)
>>> precision = Precision(average='micro')
>>> precision(preds, target)
tensor(0.2500)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes the precision score based on inputs passed in to update previously.

Return type Tensor

Returns

The shape of the returned tensor depends on the average parameter

• If average in ['micro', 'macro', 'weighted', 'samples'], a one-element
tensor will be returned

• If average in ['none', None], the shape will be (C,), where C stands for the number
of classes

2.5. Module metrics 67

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

PrecisionRecallCurve

class torchmetrics.PrecisionRecallCurve(num_classes=None, pos_label=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None)

Computes precision-recall pairs for different thresholds. Works for both binary and multiclass problems. In the
case of multiclass, the values will be calculated based on a one-vs-the-rest approach.

Forward accepts

• preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor with probabilities, where C
is the number of classes.

• target (long tensor): (N, ...) or (N, C, ...) with integer labels

Parameters

• num_classes¶ (Optional[int]) – integer with number of classes for multi-label and mul-
ticlass problems. Should be set to None for binary problems

• pos_label¶ (Optional[int]) – integer determining the positive class. Default is None
which for binary problem is translate to 1. For multiclass problems this argument should not
be set as we iteratively change it in the range [0,num_classes-1]

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Example (binary case):

>>> from torchmetrics import PrecisionRecallCurve
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 1, 0])
>>> pr_curve = PrecisionRecallCurve(pos_label=1)
>>> precision, recall, thresholds = pr_curve(pred, target)
>>> precision
tensor([0.6667, 0.5000, 0.0000, 1.0000])
>>> recall
tensor([1.0000, 0.5000, 0.0000, 0.0000])
>>> thresholds
tensor([1, 2, 3])

Example (multiclass case):

>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> pr_curve = PrecisionRecallCurve(num_classes=5)
>>> precision, recall, thresholds = pr_curve(pred, target)
>>> precision
[tensor([1., 1.]), tensor([1., 1.]), tensor([0.2500, 0.0000, 1.0000]),

(continues on next page)

68 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

PyTorch-Metrics Documentation, Release 0.6.2

(continued from previous page)

tensor([0.2500, 0.0000, 1.0000]), tensor([0., 1.])]
>>> recall
[tensor([1., 0.]), tensor([1., 0.]), tensor([1., 0., 0.]), tensor([1., 0., 0.]),
→˓ tensor([nan, 0.])]
>>> thresholds
[tensor([0.7500]), tensor([0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500,␣
→˓0.7500]), tensor([0.0500])]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Compute the precision-recall curve.

Return type Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor],
List[Tensor]]]

Returns

3-element tuple containing

precision: tensor where element i is the precision of predictions with score >= thresholds[i]
and the last element is 1. If multiclass, this is a list of such tensors, one for each class.

recall: tensor where element i is the recall of predictions with score >= thresholds[i] and the
last element is 0. If multiclass, this is a list of such tensors, one for each class.

thresholds: Thresholds used for computing precision/recall scores

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

Recall

class torchmetrics.Recall(num_classes=None, threshold=0.5, average='micro', mdmc_average=None,
ignore_index=None, top_k=None, multiclass=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Computes Recall:

Recall =
TP

TP + FN

Where TP and FN represent the number of true positives and false negatives respecitively. With the use of top_k
parameter, this metric can generalize to Recall@K.

The reduction method (how the recall scores are aggregated) is controlled by the average parameter, and addi-
tionally by the mdmc_average parameter in the multi-dimensional multi-class case. Accepts all inputs listed in
Input types.

Parameters

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

2.5. Module metrics 69

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Precision_and_recall
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

PyTorch-Metrics Documentation, Release 0.6.2

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tp + fn).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class. The default
value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

70 Chapter 2. More reading

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

PyTorch-Metrics Documentation, Release 0.6.2

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Raises ValueError – If average is none of "micro", "macro", "weighted", "samples", "none
", None.

Example

>>> from torchmetrics import Recall
>>> preds = torch.tensor([2, 0, 2, 1])
>>> target = torch.tensor([1, 1, 2, 0])
>>> recall = Recall(average='macro', num_classes=3)
>>> recall(preds, target)
tensor(0.3333)
>>> recall = Recall(average='micro')
>>> recall(preds, target)
tensor(0.2500)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes the recall score based on inputs passed in to update previously.

Return type Tensor

Returns

The shape of the returned tensor depends on the average parameter

• If average in ['micro', 'macro', 'weighted', 'samples'], a one-element
tensor will be returned

• If average in ['none', None], the shape will be (C,), where C stands for the number
of classes

ROC

class torchmetrics.ROC(num_classes=None, pos_label=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Computes the Receiver Operating Characteristic (ROC). Works for both binary, multiclass and multilabel prob-
lems. In the case of multiclass, the values will be calculated based on a one-vs-the-rest approach.

Forward accepts

• preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass/multilabel) tensor with probabilities,
where C is the number of classes/labels.

• target (long tensor): (N, ...) or (N, C, ...) with integer labels

Note: If either the positive class or negative class is completly missing in the target tensor, the roc values are
not well defined in this case and a tensor of zeros will be returned (either fpr or tpr depending on what class is
missing) together with an warning.

Parameters

2.5. Module metrics 71

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

• num_classes¶ (Optional[int]) – integer with number of classes for multi-label and mul-
ticlass problems. Should be set to None for binary problems

• pos_label¶ (Optional[int]) – integer determining the positive class. Default is None
which for binary problem is translate to 1. For multiclass problems this argument should not
be set as we iteratively change it in the range [0,num_classes-1]

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather

Example (binary case):

>>> from torchmetrics import ROC
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 1, 1])
>>> roc = ROC(pos_label=1)
>>> fpr, tpr, thresholds = roc(pred, target)
>>> fpr
tensor([0., 0., 0., 0., 1.])
>>> tpr
tensor([0.0000, 0.3333, 0.6667, 1.0000, 1.0000])
>>> thresholds
tensor([4, 3, 2, 1, 0])

Example (multiclass case):

>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05],
... [0.05, 0.05, 0.05, 0.75]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> roc = ROC(num_classes=4)
>>> fpr, tpr, thresholds = roc(pred, target)
>>> fpr
[tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0.0000, 0.3333, 1.0000]),␣
→˓tensor([0.0000, 0.3333, 1.0000])]
>>> tpr
[tensor([0., 1., 1.]), tensor([0., 1., 1.]), tensor([0., 0., 1.]), tensor([0.,␣
→˓0., 1.])]
>>> thresholds
[tensor([1.7500, 0.7500, 0.0500]),
tensor([1.7500, 0.7500, 0.0500]),
tensor([1.7500, 0.7500, 0.0500]),
tensor([1.7500, 0.7500, 0.0500])]

Example (multilabel case):

72 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable

PyTorch-Metrics Documentation, Release 0.6.2

>>> pred = torch.tensor([[0.8191, 0.3680, 0.1138],
... [0.3584, 0.7576, 0.1183],
... [0.2286, 0.3468, 0.1338],
... [0.8603, 0.0745, 0.1837]])
>>> target = torch.tensor([[1, 1, 0], [0, 1, 0], [0, 0, 0], [0, 1, 1]])
>>> roc = ROC(num_classes=3, pos_label=1)
>>> fpr, tpr, thresholds = roc(pred, target)
>>> fpr
[tensor([0.0000, 0.3333, 0.3333, 0.6667, 1.0000]),
tensor([0., 0., 0., 1., 1.]),
tensor([0.0000, 0.0000, 0.3333, 0.6667, 1.0000])]
>>> tpr
[tensor([0., 0., 1., 1., 1.]),
tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000]),
tensor([0., 1., 1., 1., 1.])]
>>> thresholds
[tensor([1.8603, 0.8603, 0.8191, 0.3584, 0.2286]),
tensor([1.7576, 0.7576, 0.3680, 0.3468, 0.0745]),
tensor([1.1837, 0.1837, 0.1338, 0.1183, 0.1138])]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Compute the receiver operating characteristic.

Return type Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor],
List[Tensor]]]

Returns

3-element tuple containing

fpr: tensor with false positive rates. If multiclass, this is a list of such tensors, one for each
class.

tpr: tensor with true positive rates. If multiclass, this is a list of such tensors, one for each
class.

thresholds: thresholds used for computing false- and true postive rates

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

2.5. Module metrics 73

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

Specificity

class torchmetrics.Specificity(num_classes=None, threshold=0.5, average='micro', mdmc_average=None,
ignore_index=None, top_k=None, multiclass=None,
compute_on_step=True, dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Computes Specificity:

Specificity =
TN

TN + FP

Where TN and FP represent the number of true negatives and false positives respecitively. With the use of top_k
parameter, this metric can generalize to Specificity@K.

The reduction method (how the specificity scores are aggregated) is controlled by the average parameter, and
additionally by the mdmc_average parameter in the multi-dimensional multi-class case. Accepts all inputs listed
in Input types.

Parameters

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

• threshold¶ (float) – Threshold probability value for transforming probability predictions
to binary (0,1) predictions, in the case of binary or multi-label inputs.

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tn + fp).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

74 Chapter 2. More reading

https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• top_k¶ (Optional[int]) – Number of highest probability entries for each sample to convert
to 1s - relevant only for inputs with probability predictions. If this parameter is set for multi-
label inputs, it will take precedence over threshold. For (multi-dim) multi-class inputs,
this parameter defaults to 1.

Should be left unset (None) for inputs with label predictions.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Raises ValueError – If average is none of "micro", "macro", "weighted", "samples", "none
", None.

Example

>>> from torchmetrics import Specificity
>>> preds = torch.tensor([2, 0, 2, 1])
>>> target = torch.tensor([1, 1, 2, 0])
>>> specificity = Specificity(average='macro', num_classes=3)
>>> specificity(preds, target)
tensor(0.6111)
>>> specificity = Specificity(average='micro')
>>> specificity(preds, target)
tensor(0.6250)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes the specificity score based on inputs passed in to update previously.

Return type Tensor

Returns

The shape of the returned tensor depends on the average parameter

• If average in ['micro', 'macro', 'weighted', 'samples'], a one-element
tensor will be returned

• If average in ['none', None], the shape will be (C,), where C stands for the number
of classes

2.5. Module metrics 75

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

StatScores

class torchmetrics.StatScores(threshold=0.5, top_k=None, reduce='micro', num_classes=None,
ignore_index=None, mdmc_reduce=None, multiclass=None,
compute_on_step=True, dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Computes the number of true positives, false positives, true negatives, false negatives. Related to Type I and
Type II errors and the confusion matrix.

The reduction method (how the statistics are aggregated) is controlled by the reduce parameter, and additionally
by the mdmc_reduce parameter in the multi-dimensional multi-class case.

Accepts all inputs listed in Input types.

Parameters

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

• reduce¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Counts the statistics by summing over all [sample, class] combinations
(globally). Each statistic is represented by a single integer.

– 'macro': Counts the statistics for each class separately (over all samples). Each statistic
is represented by a (C,) tensor. Requires num_classes to be set.

– 'samples': Counts the statistics for each sample separately (over all classes). Each statis-
tic is represented by a (N,) 1d tensor.

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_reduce.

• num_classes¶ (Optional[int]) – Number of classes. Necessary for (multi-dimensional)
multi-class or multi-label data.

• ignore_index¶ (Optional[int]) – Specify a class (label) to ignore. If given, this class
index does not contribute to the returned score, regardless of reduction method. If an index is
ignored, and reduce='macro', the class statistics for the ignored class will all be returned
as -1.

• mdmc_reduce¶ (Optional[str]) – Defines how the multi-dimensional multi-class inputs
are handeled. Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class
(see Input types for the definition of input types).

– 'samplewise': In this case, the statistics are computed separately for each sample on the
N axis, and then the outputs are concatenated together. In each sample the extra axes ...
are flattened to become the sub-sample axis, and statistics for each sample are computed
by treating the sub-sample axis as the N axis for that sample.

76 Chapter 2. More reading

https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://en.wikipedia.org/wiki/Confusion_matrix#Table_of_confusion
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

– 'global': In this case the N and ... dimensions of the inputs are flattened into a new
N_X sample axis, i.e. the inputs are treated as if they were (N_X, C). From here on the
reduce parameter applies as usual.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Raises

• ValueError – If reduce is none of "micro", "macro" or "samples".

• ValueError – If mdmc_reduce is none of None, "samplewise", "global".

• ValueError – If reduce is set to "macro" and num_classes is not provided.

• ValueError – If num_classes is set and ignore_index is not in the range 0 <=
ignore_index < num_classes.

Example

>>> from torchmetrics.classification import StatScores
>>> preds = torch.tensor([1, 0, 2, 1])
>>> target = torch.tensor([1, 1, 2, 0])
>>> stat_scores = StatScores(reduce='macro', num_classes=3)
>>> stat_scores(preds, target)
tensor([[0, 1, 2, 1, 1],

[1, 1, 1, 1, 2],
[1, 0, 3, 0, 1]])

>>> stat_scores = StatScores(reduce='micro')
>>> stat_scores(preds, target)
tensor([2, 2, 6, 2, 4])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes the stat scores based on inputs passed in to update previously.

Return type Tensor

Returns

The metric returns a tensor of shape (..., 5), where the last dimension corresponds to [tp,
fp, tn, fn, sup] (sup stands for support and equals tp + fn). The shape depends on
the reduce and mdmc_reduce (in case of multi-dimensional multi-class data) parameters:

• If the data is not multi-dimensional multi-class, then

– If reduce='micro', the shape will be (5,)

2.5. Module metrics 77

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

– If reduce='macro', the shape will be (C, 5), where C stands for the number of classes

– If reduce='samples', the shape will be (N, 5), where N stands for the number of
samples

• If the data is multi-dimensional multi-class and mdmc_reduce='global', then

– If reduce='micro', the shape will be (5,)

– If reduce='macro', the shape will be (C, 5)

– If reduce='samples', the shape will be (N*X, 5), where X stands for the product of
sizes of all “extra” dimensions of the data (i.e. all dimensions except for C and N)

• If the data is multi-dimensional multi-class and mdmc_reduce='samplewise', then

– If reduce='micro', the shape will be (N, 5)

– If reduce='macro', the shape will be (N, C, 5)

– If reduce='samples', the shape will be (N, X, 5)

update(preds, target)
Update state with predictions and targets. See Input types for more information on input types.

Parameters

• preds¶ (Tensor) – Predictions from model (probabilities, logits or labels)

• target¶ (Tensor) – Ground truth values

Return type None

2.5.5 Image Metrics

Image quality metrics can be used to access the quality of synthetic generated images from machine learning algorithms
such as Generative Adverserial Networks (GANs).

FID

class torchmetrics.FID(feature=2048, compute_on_step=False, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Calculates Fréchet inception distance (FID) which is used to access the quality of generated images. Given by

𝐹𝐼𝐷 = |𝜇− 𝜇𝑤| + 𝑡𝑟(Σ + Σ𝑤 − 2(ΣΣ𝑤)
1
2)

where 𝒩 (𝜇,Σ) is the multivariate normal distribution estimated from Inception v3 [1] features calculated on
real life images and 𝒩 (𝜇𝑤,Σ𝑤) is the multivariate normal distribution estimated from Inception v3 features
calculated on generated (fake) images. The metric was originally proposed in [1].

Using the default feature extraction (Inception v3 using the original weights from [2]), the input is expected to
be mini-batches of 3-channel RGB images of shape (3 x H x W) with dtype uint8. All images will be resized to
299 x 299 which is the size of the original training data. The boolian flag real determines if the images should
update the statistics of the real distribution or the fake distribution.

Note: using this metrics requires you to have scipy install. Either install as pip install
torchmetrics[image] or pip install scipy

78 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Fr%C3%A9chet_inception_distance

PyTorch-Metrics Documentation, Release 0.6.2

Note: using this metric with the default feature extractor requires that torch-fidelity is installed. Either
install as pip install torchmetrics[image] or pip install torch-fidelity

Note: the forward method can be used but compute_on_step is disabled by default (oppesit of all other
metrics) as this metric does not really make sense to calculate on a single batch. This means that by default
forward will just call update underneat.

Parameters

• feature¶ (Union[int, Module]) – Either an integer or nn.Module:

– an integer will indicate the inceptionv3 feature layer to choose. Can be one of the follow-
ing: 64, 192, 768, 2048

– an nn.Module for using a custom feature extractor. Expects that its forward method re-
turns an [N,d] matrix where N is the batch size and d is the feature size.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable[[Tensor], List[Tensor]]]) – Callback that per-
forms the allgather operation on the metric state. When None, DDP will be used to perform
the allgather

References

[1] Rethinking the Inception Architecture for Computer Vision Christian Szegedy, Vincent Vanhoucke, Sergey
Ioffe, Jonathon Shlens, Zbigniew Wojna https://arxiv.org/abs/1512.00567

[2] GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, Martin Heusel,
Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter https://arxiv.org/abs/1706.08500

Raises

• ValueError – If feature is set to an int (default settings) and torch-fidelity is not
installed

• ValueError – If feature is set to an int not in [64, 192, 768, 2048]

• TypeError – If feature is not an str, int or torch.nn.Module

2.5. Module metrics 79

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1706.08500
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> import torch
>>> _ = torch.manual_seed(123)
>>> from torchmetrics import FID
>>> fid = FID(feature=64)
>>> # generate two slightly overlapping image intensity distributions
>>> imgs_dist1 = torch.randint(0, 200, (100, 3, 299, 299), dtype=torch.uint8)
>>> imgs_dist2 = torch.randint(100, 255, (100, 3, 299, 299), dtype=torch.uint8)
>>> fid.update(imgs_dist1, real=True)
>>> fid.update(imgs_dist2, real=False)
>>> fid.compute()
tensor(12.7202)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Calculate FID score based on accumulated extracted features from the two distributions.

Return type Tensor

update(imgs, real)
Update the state with extracted features.

Parameters

• imgs¶ (Tensor) – tensor with images feed to the feature extractor

• real¶ (bool) – bool indicating if imgs belong to the real or the fake distribution

Return type None

IS

class torchmetrics.IS(feature='logits_unbiased', splits=10, compute_on_step=False,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Calculates the Inception Score (IS) which is used to access how realistic generated images are. It is defined as

𝐼𝑆 = 𝑒𝑥𝑝(E𝑥𝐾𝐿(𝑝(𝑦|𝑥)||𝑝(𝑦)))

where 𝐾𝐿(𝑝(𝑦|𝑥)||𝑝(𝑦)) is the KL divergence between the conditional distribution 𝑝(𝑦|𝑥) and the margianl
distribution 𝑝(𝑦). Both the conditional and marginal distribution is calculated from features extracted from the
images. The score is calculated on random splits of the images such that both a mean and standard deviation of
the score are returned. The metric was originally proposed in [1].

Using the default feature extraction (Inception v3 using the original weights from [2]), the input is expected to
be mini-batches of 3-channel RGB images of shape (3 x H x W) with dtype uint8. All images will be resized to
299 x 299 which is the size of the original training data.

Note: using this metric with the default feature extractor requires that torch-fidelity is installed. Either
install as pip install torchmetrics[image] or pip install torch-fidelity

Note: the forward method can be used but compute_on_step is disabled by default (oppesit of all other
metrics) as this metric does not really make sense to calculate on a single batch. This means that by default
forward will just call update underneat.

80 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

Parameters

• feature¶ (Union[str, int, Module]) – Either an str, integer or nn.Module:

– an str or integer will indicate the inceptionv3 feature layer to choose. Can be one of the
following: ‘logits_unbiased’, 64, 192, 768, 2048

– an nn.Module for using a custom feature extractor. Expects that its forward method re-
turns an [N,d] matrix where N is the batch size and d is the feature size.

• splits¶ (int) – integer determining how many splits the inception score calculation should
be split among

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable[[Tensor], List[Tensor]]]) – Callback that per-
forms the allgather operation on the metric state. When None, DDP will be used to perform
the allgather

References

[1] Improved Techniques for Training GANs Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung,
Alec Radford, Xi Chen https://arxiv.org/abs/1606.03498

[2] GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, Martin Heusel,
Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter https://arxiv.org/abs/1706.08500

Raises

• ValueError – If feature is set to an str or int and torch-fidelity is not installed

• ValueError – If feature is set to an str or int and not one of [‘logits_unbiased’, 64,
192, 768, 2048]

• TypeError – If feature is not an str, int or torch.nn.Module

Example

>>> import torch
>>> _ = torch.manual_seed(123)
>>> from torchmetrics import IS
>>> inception = IS()
>>> # generate some images
>>> imgs = torch.randint(0, 255, (100, 3, 299, 299), dtype=torch.uint8)
>>> inception.update(imgs)
>>> inception.compute()
(tensor(1.0569), tensor(0.0113))

Initializes internal Module state, shared by both nn.Module and ScriptModule.

2.5. Module metrics 81

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1706.08500
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError

PyTorch-Metrics Documentation, Release 0.6.2

compute()
Override this method to compute the final metric value from state variables synchronized across the dis-
tributed backend.

Return type Tuple[Tensor, Tensor]

update(imgs)
Update the state with extracted features.

Parameters imgs¶ (Tensor) – tensor with images feed to the feature extractor

Return type None

KID

class torchmetrics.KID(feature=2048, subsets=100, subset_size=1000, degree=3, gamma=None, coef=1.0,
compute_on_step=False, dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Calculates Kernel Inception Distance (KID) which is used to access the quality of generated images. Given by

𝐾𝐼𝐷 = 𝑀𝑀𝐷(𝑓𝑟𝑒𝑎𝑙, 𝑓𝑓𝑎𝑘𝑒)
2

where 𝑀𝑀𝐷 is the maximum mean discrepancy and 𝐼𝑟𝑒𝑎𝑙, 𝐼𝑓𝑎𝑘𝑒 are extracted features from real and fake
images, see [1] for more details. In particular, calculating the MMD requires the evaluation of a polynomial
kernel function 𝑘

𝑘(𝑥, 𝑦) = (𝛾 * 𝑥𝑇 𝑦 + 𝑐𝑜𝑒𝑓)𝑑𝑒𝑔𝑟𝑒𝑒

which controls the distance between two features. In practise the MMD is calculated over a number of subsets
to be able to both get the mean and standard deviation of KID.

Using the default feature extraction (Inception v3 using the original weights from [2]), the input is expected to
be mini-batches of 3-channel RGB images of shape (3 x H x W) with dtype uint8. All images will be resized to
299 x 299 which is the size of the original training data.

Note: using this metric with the default feature extractor requires that torch-fidelity is installed. Either
install as pip install torchmetrics[image] or pip install torch-fidelity

Note: the forward method can be used but compute_on_step is disabled by default (oppesit of all other
metrics) as this metric does not really make sense to calculate on a single batch. This means that by default
forward will just call update underneat.

Parameters

• feature¶ (Union[str, int, Module]) – Either an str, integer or nn.Module:

– an str or integer will indicate the inceptionv3 feature layer to choose. Can be one of the
following: ‘logits_unbiased’, 64, 192, 768, 2048

– an nn.Module for using a custom feature extractor. Expects that its forward method re-
turns an [N,d] matrix where N is the batch size and d is the feature size.

• subsets¶ (int) – Number of subsets to calculate the mean and standard deviation scores
over

• subset_size¶ (int) – Number of randomly picked samples in each subset

82 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Tuple
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyTorch-Metrics Documentation, Release 0.6.2

• degree¶ (int) – Degree of the polynomial kernel function

• gamma¶ (Optional[float]) – Scale-length of polynomial kernel. If set to None will be
automatically set to the feature size

• coef¶ (float) – Bias term in the polynomial kernel.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather

References

[1] Demystifying MMD GANs Mikołaj Bińkowski, Danica J. Sutherland, Michael Arbel, Arthur Gretton https:
//arxiv.org/abs/1801.01401

[2] GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, Martin Heusel,
Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter https://arxiv.org/abs/1706.08500

Raises

• ValueError – If feature is set to an int (default settings) and torch-fidelity is not
installed

• ValueError – If feature is set to an int not in [64, 192, 768, 2048]

• ValueError – If subsets is not an integer larger than 0

• ValueError – If subset_size is not an integer larger than 0

• ValueError – If degree is not an integer larger than 0

• ValueError – If gamma is niether None or a float larger than 0

• ValueError – If coef is not an float larger than 0

Example

>>> import torch
>>> _ = torch.manual_seed(123)
>>> from torchmetrics import KID
>>> kid = KID(subset_size=50)
>>> # generate two slightly overlapping image intensity distributions
>>> imgs_dist1 = torch.randint(0, 200, (100, 3, 299, 299), dtype=torch.uint8)
>>> imgs_dist2 = torch.randint(100, 255, (100, 3, 299, 299), dtype=torch.uint8)
>>> kid.update(imgs_dist1, real=True)
>>> kid.update(imgs_dist2, real=False)
>>> kid_mean, kid_std = kid.compute()
>>> print((kid_mean, kid_std))
(tensor(0.0338), tensor(0.0025))

Initializes internal Module state, shared by both nn.Module and ScriptModule.

2.5. Module metrics 83

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://arxiv.org/abs/1801.01401
https://arxiv.org/abs/1801.01401
https://arxiv.org/abs/1706.08500
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

compute()
Calculate KID score based on accumulated extracted features from the two distributions. Returns a tuple
of mean and standard deviation of KID scores calculated on subsets of extracted features.

Implementation inspired by Fid Score

Return type Tuple[Tensor, Tensor]

update(imgs, real)
Update the state with extracted features.

Parameters

• imgs¶ (Tensor) – tensor with images feed to the feature extractor

• real¶ (bool) – bool indicating if imgs belong to the real or the fake distribution

Return type None

LPIPS

class torchmetrics.LPIPS(net_type='alex', reduction='mean', compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

The Learned Perceptual Image Patch Similarity (LPIPS_) is used to judge the perceptual similarity between two
images. LPIPS essentially computes the similarity between the activations of two image patches for some pre-
defined network. This measure have been shown to match human perseption well. A low LPIPS score means
that image patches are perceptual similar.

Both input image patches are expected to have shape [N, 3, H, W] and be normalized to the [-1,1] range. The
minimum size of H, W depends on the chosen backbone (see net_type arg).

Note: using this metrics requires you to have lpips package installed. Either install as pip install
torchmetrics[image] or pip install lpips

Note: this metric is not scriptable when using torch<1.8. Please update your pytorch installation if this is a
issue.

Parameters

• net_type¶ (str) – str indicating backbone network type to use. Choose between ‘alex’,
‘vgg’ or ‘squeeze’

• reduction¶ (str) – str indicating how to reduce over the batch dimension. Choose between
‘sum’ or ‘mean’.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable[[Tensor], List[Tensor]]]) – Callback that per-
forms the allgather operation on the metric state. When None, DDP will be used to perform
the allgather

84 Chapter 2. More reading

https://github.com/photosynthesis-team/piq/blob/master/piq/fid.py
https://docs.python.org/3/library/typing.html#typing.Tuple
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

Raises

• ValueError – If lpips package is not installed

• ValueError – If net_type is not one of "vgg", "alex" or "squeeze"

• ValueError – If reduction is not one of "mean" or "sum"

Example

>>> import torch
>>> _ = torch.manual_seed(123)
>>> from torchmetrics import LPIPS
>>> lpips = LPIPS(net_type='vgg')
>>> img1 = torch.rand(10, 3, 100, 100)
>>> img2 = torch.rand(10, 3, 100, 100)
>>> lpips(img1, img2)
tensor([0.3566], grad_fn=<DivBackward0>)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Compute final perceptual similarity metric.

Return type Tensor

update(img1, img2)
Update internal states with lpips score.

Parameters

• img1¶ (Tensor) – tensor with images of shape [N, 3, H, W]

• img2¶ (Tensor) – tensor with images of shape [N, 3, H, W]

Return type None

PSNR

class torchmetrics.PSNR(data_range=None, base=10.0, reduction='elementwise_mean', dim=None,
compute_on_step=True, dist_sync_on_step=False, process_group=None)

Computes Computes Peak Signal-to-Noise Ratio (PSNR):

PSNR(𝐼, 𝐽) = 10 * log10

(︂
max(𝐼)2

MSE(𝐼, 𝐽)

)︂
Where MSE denotes the mean-squared-error function.

Parameters

• data_range¶ (Optional[float]) – the range of the data. If None, it is determined from
the data (max - min). The data_range must be given when dim is not None.

• base¶ (float) – a base of a logarithm to use (default: 10)

• reduction¶ (str) – a method to reduce metric score over labels.

– 'elementwise_mean': takes the mean (default)

– 'sum': takes the sum

2.5. Module metrics 85

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://en.wikipedia.org/wiki/Mean_squared_error
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

– 'none': no reduction will be applied

• dim¶ (Union[int, Tuple[int, . . .], None]) – Dimensions to reduce PSNR scores over, pro-
vided as either an integer or a list of integers. Default is None meaning scores will be reduced
across all dimensions and all batches.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Raises ValueError – If dim is not None and data_range is not given.

Example

>>> from torchmetrics import PSNR
>>> psnr = PSNR()
>>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
>>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
>>> psnr(preds, target)
tensor(2.5527)

Note: Half precision is only support on GPU for this metric

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Compute peak signal-to-noise ratio over state.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

SSIM

class torchmetrics.SSIM(kernel_size=(11, 11), sigma=(1.5, 1.5), reduction='elementwise_mean',
data_range=None, k1=0.01, k2=0.03, compute_on_step=True,
dist_sync_on_step=False, process_group=None)

Computes Structual Similarity Index Measure (SSIM).

Parameters

• kernel_size¶ (Sequence[int]) – size of the gaussian kernel (default: (11, 11))

• sigma¶ (Sequence[float]) – Standard deviation of the gaussian kernel (default: (1.5, 1.5))

86 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Structural_similarity
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float

PyTorch-Metrics Documentation, Release 0.6.2

• reduction¶ (str) – a method to reduce metric score over labels.

– 'elementwise_mean': takes the mean (default)

– 'sum': takes the sum

– 'none': no reduction will be applied

• data_range¶ (Optional[float]) – Range of the image. If None, it is determined from
the image (max - min)

• k1¶ (float) – Parameter of SSIM. Default: 0.01

• k2¶ (float) – Parameter of SSIM. Default: 0.03

Returns Tensor with SSIM score

Example

>>> from torchmetrics import SSIM
>>> preds = torch.rand([16, 1, 16, 16])
>>> target = preds * 0.75
>>> ssim = SSIM()
>>> ssim(preds, target)
tensor(0.9219)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes explained variance over state.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

2.5.6 Detection Metrics

Object detection metrics can be used to evaluate the predicted detections with given groundtruth detections on images.

MAP

class torchmetrics.MAP(box_format='xyxy', iou_thresholds=None, rec_thresholds=None,
max_detection_thresholds=None, class_metrics=False, compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Computes the Mean-Average-Precision (mAP) and Mean-Average-Recall (mAR) for object detection predic-
tions. Optionally, the mAP and mAR values can be calculated per class.

Predicted boxes and targets have to be in Pascal VOC format (xmin-top left, ymin-top left, xmax-bottom right,
ymax-bottom right). See the update() method for more information about the input format to this metric.

2.5. Module metrics 87

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

PyTorch-Metrics Documentation, Release 0.6.2

For an example on how to use this metric check the torchmetrics examples

Note: This metric is following the mAP implementation of pycocotools, , a standard implementation for the
mAP metric for object detection.

Note: This metric requires you to have torchvision version 0.8.0 or newer installed (with correspond-
ing version 1.7.0 of torch or newer). Please install with pip install torchvision or pip install
torchmetrics[detection].

Parameters

• box_format¶ (str) – Input format of given boxes. Supported formats are [‘xyxy’, ‘xywh’,
‘cxcywh’].

• iou_thresholds¶ (Optional[List[float]]) – IoU thresholds for evaluation. If set to
None it corresponds to the stepped range [0.5,. . . ,0.95] with step 0.05. Else provide a list of
floats.

• rec_thresholds¶ (Optional[List[float]]) – Recall thresholds for evaluation. If set to
None it corresponds to the stepped range [0,. . . ,1] with step 0.01. Else provide a list of floats.

• max_detection_thresholds¶ (Optional[List[int]]) – Thresholds on max detections
per image. If set to None will use thresholds [1, 10, 100]. Else please provide a list of ints.

• class_metrics¶ (bool) – Option to enable per-class metrics for mAP and mAR_100. Has
a performance impact.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather

Raises

• ImportError – If torchvision is not installed or version installed is lower than 0.8.0

• ValueError – If class_metrics is not a boolean

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Compute the Mean-Average-Precision (mAP) and Mean-Average-Recall (mAR) scores.

Note: map score is calculated with @[IoU=self.iou_thresholds | area=all |
max_dets=max_detection_thresholds]

Caution: If the initialization parameters are changed, dictionary keys for mAR can change as well. The
default properties are also accessible via fields and will raise an AttributeError if not available.

88 Chapter 2. More reading

https://github.com/PyTorchLightning/metrics/blob/master/tm_examples/detection_map.py
https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

Return type dict

Returns

dict containing

• map: torch.Tensor

• map_50: torch.Tensor

• map_75: torch.Tensor

• map_small: torch.Tensor

• map_medium: torch.Tensor

• map_large: torch.Tensor

• mar_1: torch.Tensor

• mar_10: torch.Tensor

• mar_100: torch.Tensor

• mar_small: torch.Tensor

• mar_medium: torch.Tensor

• mar_large: torch.Tensor

• map_per_class: torch.Tensor (-1 if class metrics are disabled)

• mar_100_per_class: torch.Tensor (-1 if class metrics are disabled)

update(preds, target)
Add detections and ground truth to the metric.

Parameters

• preds¶ (List[Dict[str, Tensor]]) – A list consisting of dictionaries each containing the
key-values

• image) ((each _sphinx_paramlinks_torchmetrics.MAP.update.dictionary
corresponds to a single) –

• ``boxes``¶ (-) – torch.FloatTensor of shape [num_boxes, 4] containing num_boxes
detection boxes of the format specified in the contructor. By default, this method expects
[xmin, ymin, xmax, ymax] in absolute image coordinates.

• ``scores``¶ (-) – torch.FloatTensor of shape [num_boxes] containing detection
scores for the boxes.

• ``labels``¶ (-) – torch.IntTensor of shape [num_boxes] containing 0-indexed de-
tection classes for the boxes.

• target¶ (List[Dict[str, Tensor]]) – A list consisting of dictionaries each containing
the key-values

• image) –

• ``boxes``¶ – torch.FloatTensor of shape [num_boxes, 4] containing num_boxes
ground truth boxes of the format specified in the contructor. By default, this method expects
[xmin, ymin, xmax, ymax] in absolute image coordinates.

• ``labels``¶ – torch.IntTensor of shape [num_boxes] containing 1-indexed ground
truth classes for the boxes.

Raises

2.5. Module metrics 89

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

• ValueError – If preds is not of type List[Dict[str, Tensor]]

• ValueError – If target is not of type List[Dict[str, Tensor]]

• ValueError – If preds and target are not of the same length

• ValueError – If any of preds.boxes, preds.scores and preds.labels are not of the
same length

• ValueError – If any of target.boxes and target.labels are not of the same length

• ValueError – If any box is not type float and of length 4

• ValueError – If any class is not type int and of length 1

• ValueError – If any score is not type float and of length 1

Return type None

2.5.7 Regression Metrics

CosineSimilarity

class torchmetrics.CosineSimilarity(reduction='sum', compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Computes the Cosine Similarity between targets and predictions:

𝑐𝑜𝑠𝑠𝑖𝑚(𝑥, 𝑦) =
𝑥 · 𝑦

||𝑥|| · ||𝑦||
=

∑︀𝑛
𝑖=1 𝑥𝑖𝑦𝑖√︀∑︀𝑛

𝑖=1 𝑥
2
𝑖

√︀∑︀𝑛
𝑖=1 𝑦

2
𝑖

where 𝑦 is a tensor of target values, and 𝑥 is a tensor of predictions.

Forward accepts

• preds (float tensor): (N,d)

• target (float tensor): (N,d)

Parameters

• reduction¶ (str) – how to reduce over the batch dimension using ‘sum’, ‘mean’ or ‘none’
(taking the individual scores)

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the all gather.

90 Chapter 2. More reading

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Cosine_similarity
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics import CosineSimilarity
>>> target = torch.tensor([[0, 1], [1, 1]])
>>> preds = torch.tensor([[0, 1], [0, 1]])
>>> cosine_similarity = CosineSimilarity(reduction = 'mean')
>>> cosine_similarity(preds, target)
tensor(0.8536)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Override this method to compute the final metric value from state variables synchronized across the dis-
tributed backend.

Return type Tensor

update(preds, target)
Update metric states with predictions and targets.

Parameters

• preds¶ (Tensor) – Predicted tensor with shape (N,d)

• target¶ (Tensor) – Ground truth tensor with shape (N,d)

Return type None

ExplainedVariance

class torchmetrics.ExplainedVariance(multioutput='uniform_average', compute_on_step=True,
dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Computes explained variance:

ExplainedVariance = 1 − Var(𝑦 − 𝑦)

Var(𝑦)

Where 𝑦 is a tensor of target values, and 𝑦 is a tensor of predictions.

Forward accepts

• preds (float tensor): (N,) or (N, ...) (multioutput)

• target (long tensor): (N,) or (N, ...) (multioutput)

In the case of multioutput, as default the variances will be uniformly averaged over the additional dimensions.
Please see argument multioutput for changing this behavior.

Parameters

• multioutput¶ (str) – Defines aggregation in the case of multiple output scores. Can be
one of the following strings (default is ‘uniform_average’.):

– ’raw_values’ returns full set of scores

– ’uniform_average’ scores are uniformly averaged

– ’variance_weighted’ scores are weighted by their individual variances

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

2.5. Module metrics 91

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Explained_variation
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Raises ValueError – If multioutput is not one of "raw_values", "uniform_average" or
"variance_weighted".

Example

>>> from torchmetrics import ExplainedVariance
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> explained_variance = ExplainedVariance()
>>> explained_variance(preds, target)
tensor(0.9572)

>>> target = torch.tensor([[0.5, 1], [-1, 1], [7, -6]])
>>> preds = torch.tensor([[0, 2], [-1, 2], [8, -5]])
>>> explained_variance = ExplainedVariance(multioutput='raw_values')
>>> explained_variance(preds, target)
tensor([0.9677, 1.0000])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes explained variance over state.

Return type Union[Tensor, Sequence[Tensor]]

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

MeanAbsoluteError

class torchmetrics.MeanAbsoluteError(compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Computes Mean Absolute Error (MAE):

MAE =
1

𝑁

𝑁∑︁
𝑖

|𝑦𝑖 − 𝑦𝑖|

Where 𝑦 is a tensor of target values, and 𝑦 is a tensor of predictions.

Parameters

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

92 Chapter 2. More reading

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Union
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Sequence
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Mean_absolute_error
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Example

>>> from torchmetrics import MeanAbsoluteError
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> mean_absolute_error = MeanAbsoluteError()
>>> mean_absolute_error(preds, target)
tensor(0.5000)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes mean absolute error over state.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

MeanAbsolutePercentageError

class torchmetrics.MeanAbsolutePercentageError(compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Computes Mean Absolute Percentage Error (MAPE):

MAPE =
1

𝑛

𝑛∑︁
1

|𝑦𝑖 − 𝑦𝑖|
max(𝜖, 𝑦𝑖)

Where 𝑦 is a tensor of target values, and 𝑦 is a tensor of predictions.

Parameters

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Note: The epsilon value is taken from scikit-learn’s implementation of MAPE.

2.5. Module metrics 93

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://github.com/scikit-learn/scikit-learn/blob/15a949460/sklearn/metrics/_regression.py#L197

PyTorch-Metrics Documentation, Release 0.6.2

Note: MAPE output is a non-negative floating point. Best result is 0.0 . But it is important to note that, bad
predictions, can lead to arbitarily large values. Especially when some target values are close to 0. This MAPE
implementation returns a very large number instead of inf.

Example

>>> from torchmetrics import MeanAbsolutePercentageError
>>> target = torch.tensor([1, 10, 1e6])
>>> preds = torch.tensor([0.9, 15, 1.2e6])
>>> mean_abs_percentage_error = MeanAbsolutePercentageError()
>>> mean_abs_percentage_error(preds, target)
tensor(0.2667)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes mean absolute percentage error over state.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

MeanSquaredError

class torchmetrics.MeanSquaredError(compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None, squared=True)

Computes mean squared error (MSE):

MSE =
1

𝑁

𝑁∑︁
𝑖

(𝑦𝑖 − 𝑦𝑖)
2

Where 𝑦 is a tensor of target values, and 𝑦 is a tensor of predictions.

Parameters

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• squared¶ (bool) – If True returns MSE value, if False returns RMSE value.

94 Chapter 2. More reading

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Mean_squared_error
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics import MeanSquaredError
>>> target = torch.tensor([2.5, 5.0, 4.0, 8.0])
>>> preds = torch.tensor([3.0, 5.0, 2.5, 7.0])
>>> mean_squared_error = MeanSquaredError()
>>> mean_squared_error(preds, target)
tensor(0.8750)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes mean squared error over state.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

MeanSquaredLogError

class torchmetrics.MeanSquaredLogError(compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Computes mean squared logarithmic error (MSLE):

MSLE =
1

𝑁

𝑁∑︁
𝑖

(log𝑒(1 + 𝑦𝑖) − log𝑒(1 + 𝑦𝑖))
2

Where 𝑦 is a tensor of target values, and 𝑦 is a tensor of predictions.

Parameters

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

2.5. Module metrics 95

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-log-error
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics import MeanSquaredLogError
>>> target = torch.tensor([2.5, 5, 4, 8])
>>> preds = torch.tensor([3, 5, 2.5, 7])
>>> mean_squared_log_error = MeanSquaredLogError()
>>> mean_squared_log_error(preds, target)
tensor(0.0397)

Note: Half precision is only support on GPU for this metric

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Compute mean squared logarithmic error over state.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

PearsonCorrcoef

class torchmetrics.PearsonCorrcoef(compute_on_step=True, dist_sync_on_step=False,
process_group=None)

Computes Pearson Correlation Coefficient:

𝑃𝑐𝑜𝑟𝑟(𝑥, 𝑦) =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦

Where 𝑦 is a tensor of target values, and 𝑥 is a tensor of predictions.

Forward accepts

• preds (float tensor): (N,)

• target``(float tensor): ``(N,)

Parameters

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

96 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics import PearsonCorrcoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> pearson = PearsonCorrcoef()
>>> pearson(preds, target)
tensor(0.9849)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes pearson correlation coefficient over state.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

R2Score

class torchmetrics.R2Score(num_outputs=1, adjusted=0, multioutput='uniform_average',
compute_on_step=True, dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Computes r2 score also known as R2 Score_Coefficient Determination:

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

where 𝑆𝑆𝑟𝑒𝑠 =
∑︀

𝑖(𝑦𝑖 − 𝑓(𝑥𝑖))
2 is the sum of residual squares, and 𝑆𝑆𝑡𝑜𝑡 =

∑︀
𝑖(𝑦𝑖 − 𝑦)2 is total sum of

squares. Can also calculate adjusted r2 score given by

𝑅2
𝑎𝑑𝑗 = 1 − (1 −𝑅2)(𝑛− 1)

𝑛− 𝑘 − 1

where the parameter 𝑘 (the number of independent regressors) should be provided as the adjusted argument.

Forward accepts

• preds (float tensor): (N,) or (N, M) (multioutput)

• target (float tensor): (N,) or (N, M) (multioutput)

In the case of multioutput, as default the variances will be uniformly averaged over the additional dimensions.
Please see argument multioutput for changing this behavior.

Parameters

• num_outputs¶ (int) – Number of outputs in multioutput setting (default is 1)

• adjusted¶ (int) – number of independent regressors for calculating adjusted r2 score.
Default 0 (standard r2 score).

2.5. Module metrics 97

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyTorch-Metrics Documentation, Release 0.6.2

• multioutput¶ (str) – Defines aggregation in the case of multiple output scores. Can be
one of the following strings (default is 'uniform_average'.):

– 'raw_values' returns full set of scores

– 'uniform_average' scores are uniformly averaged

– 'variance_weighted' scores are weighted by their individual variances

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Raises

• ValueError – If adjusted parameter is not an integer larger or equal to 0.

• ValueError – If multioutput is not one of "raw_values", "uniform_average" or
"variance_weighted".

Example

>>> from torchmetrics import R2Score
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> r2score = R2Score()
>>> r2score(preds, target)
tensor(0.9486)

>>> target = torch.tensor([[0.5, 1], [-1, 1], [7, -6]])
>>> preds = torch.tensor([[0, 2], [-1, 2], [8, -5]])
>>> r2score = R2Score(num_outputs=2, multioutput='raw_values')
>>> r2score(preds, target)
tensor([0.9654, 0.9082])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes r2 score over the metric states.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

98 Chapter 2. More reading

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

SpearmanCorrcoef

class torchmetrics.SpearmanCorrcoef(compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Computes spearmans rank correlation coefficient.

where rg_x and rg_y are the rank associated to the variables x and y. Spearmans correlations coefficient corre-
sponds to the standard pearsons correlation coefficient calculated on the rank variables.

Parameters

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather

Example

>>> from torchmetrics import SpearmanCorrcoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> spearman = SpearmanCorrcoef()
>>> spearman(preds, target)
tensor(1.0000)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes spearmans correlation coefficient.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

2.5. Module metrics 99

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

SymmetricMeanAbsolutePercentageError

class torchmetrics.SymmetricMeanAbsolutePercentageError(compute_on_step=True,
dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Computes symmetric mean absolute percentage error (SMAPE).

SMAPE =
2

𝑛

𝑛∑︁
1

𝑚𝑎𝑥(
|𝑦𝑖 − 𝑦𝑖|

|𝑦𝑖| + |𝑦𝑖|, 𝜖
)

Where 𝑦 is a tensor of target values, and 𝑦 is a tensor of predictions.

Parameters

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

Note: The epsilon value is taken from scikit-learn’s implementation of SMAPE.

Note: SMAPE output is a non-negative floating point between 0 and 1. Best result is 0.0 .

Example

>>> from torchmetrics import SymmetricMeanAbsolutePercentageError
>>> target = torch.tensor([1, 10, 1e6])
>>> preds = torch.tensor([0.9, 15, 1.2e6])
>>> smape = SymmetricMeanAbsolutePercentageError()
>>> smape(preds, target)
tensor(0.2290)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Computes mean absolute percentage error over state.

Return type Tensor

update(preds, target)
Update state with predictions and targets.

Parameters

• preds¶ (Tensor) – Predictions from model

• target¶ (Tensor) – Ground truth values

Return type None

100 Chapter 2. More reading

https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://github.com/scikit-learn/scikit-learn/blob/15a949460/sklearn/metrics/_regression.py#L197
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

TweedieDevianceScore

class torchmetrics.TweedieDevianceScore(power=0.0, compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Computes the Tweedie Deviance Score between targets and predictions:

𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒(𝑦, 𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝑦 − 𝑦)2, for 𝑝𝑜𝑤𝑒𝑟 = 0

2 * (𝑦 * 𝑙𝑜𝑔(𝑦
𝑦) + 𝑦 − 𝑦), for 𝑝𝑜𝑤𝑒𝑟 = 1

2 * (𝑙𝑜𝑔(𝑦
𝑦) + 𝑦

𝑦 − 1), for 𝑝𝑜𝑤𝑒𝑟 = 2

2 * ((𝑚𝑎𝑥(𝑦,0))2

(1−𝑝𝑜𝑤𝑒𝑟)(2−𝑝𝑜𝑤𝑒𝑟) −
𝑦(𝑦)1−𝑝𝑜𝑤𝑒𝑟

1−𝑝𝑜𝑤𝑒𝑟 + (𝑦)2−𝑝𝑜𝑤𝑒𝑟

2−𝑝𝑜𝑤𝑒𝑟), otherwise

where 𝑦 is a tensor of targets values, and 𝑦 is a tensor of predictions.

Forward accepts

• preds (float tensor): (N,...)

• targets (float tensor): (N,...)

Parameters

• power¶ (float) –

– power < 0 : Extreme stable distribution. (Requires: preds > 0.)

– power = 0 : Normal distribution. (Requires: targets and preds can be any real numbers.)

– power = 1 : Poisson distribution. (Requires: targets >= 0 and y_pred > 0.)

– 1 < p < 2 : Compound Poisson distribution. (Requires: targets >= 0 and preds > 0.)

– power = 2 : Gamma distribution. (Requires: targets > 0 and preds > 0.)

– power = 3 : Inverse Gaussian distribution. (Requires: targets > 0 and preds > 0.)

– otherwise : Positive stable distribution. (Requires: targets > 0 and preds > 0.)

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the all gather.

Example

>>> from torchmetrics import TweedieDevianceScore
>>> targets = torch.tensor([1.0, 2.0, 3.0, 4.0])
>>> preds = torch.tensor([4.0, 3.0, 2.0, 1.0])
>>> deviance_score = TweedieDevianceScore(power=2)
>>> deviance_score(preds, targets)
tensor(1.2083)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

2.5. Module metrics 101

https://en.wikipedia.org/wiki/Tweedie_distribution#The_Tweedie_deviance
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable

PyTorch-Metrics Documentation, Release 0.6.2

compute()
Override this method to compute the final metric value from state variables synchronized across the dis-
tributed backend.

Return type Tensor

update(preds, targets)
Update metric states with predictions and targets.

Parameters

• preds¶ (Tensor) – Predicted tensor with shape (N,d)

• targets¶ (Tensor) – Ground truth tensor with shape (N,d)

Return type None

2.5.8 Retrieval

Input details

For the purposes of retrieval metrics, inputs (indexes, predictions and targets) must have the same size (N stands for the
batch size) and the following types:

indexes shape indexes dtype preds shape preds dtype target shape target dtype
(N,. . .) long (N,. . .) float (N,. . .) long or bool

Note: All dimensions are flattened at the beginning, so that, for example, a tensor of shape (N, M) is treated as (N *
M,).

In Information Retrieval you have a query that is compared with a variable number of documents. For each pair (Q_i,
D_j), a score is computed that measures the relevance of document D w.r.t. query Q. Documents are then sorted by
score and you hope that relevant documents are scored higher. target contains the labels for the documents (relevant
or not).

Since a query may be compared with a variable number of documents, we use indexes to keep track of which scores
belong to the set of pairs (Q_i, D_j) having the same query Q_i.

Note: Retrieval metrics are only intended to be used globally. This means that the average of the metric over each
batch can be quite different from the metric computed on the whole dataset. For this reason, we suggest to compute
the metric only when all the examples has been provided to the metric. When using Pytorch Lightning, we suggest to
use on_step=False and on_epoch=True in self.log or to place the metric calculation in training_epoch_end,
validation_epoch_end or test_epoch_end.

>>> from torchmetrics import RetrievalMAP
>>> # functional version works on a single query at a time
>>> from torchmetrics.functional import retrieval_average_precision

>>> # the first query was compared with two documents, the second with three
>>> indexes = torch.tensor([0, 0, 1, 1, 1])
>>> preds = torch.tensor([0.8, -0.4, 1.0, 1.4, 0.0])
>>> target = torch.tensor([0, 1, 0, 1, 1])

(continues on next page)

102 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

(continued from previous page)

>>> map = RetrievalMAP() # or some other retrieval metric
>>> map(preds, target, indexes=indexes)
tensor(0.6667)

>>> # the previous instruction is roughly equivalent to
>>> res = []
>>> # iterate over indexes of first and second query
>>> for indexes in ([0, 1], [2, 3, 4]):
... res.append(retrieval_average_precision(preds[indexes], target[indexes]))
>>> torch.stack(res).mean()
tensor(0.6667)

RetrievalMAP

class torchmetrics.RetrievalMAP(empty_target_action='neg', compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Computes Mean Average Precision.

Works with binary target data. Accepts float predictions from a model output.

Forward accepts

• preds (float tensor): (N, ...)

• target (long or bool tensor): (N, ...)

• indexes (long tensor): (N, ...)

indexes, preds and target must have the same dimension. indexes indicate to which query a prediction
belongs. Predictions will be first grouped by indexes and then MAP will be computed as the mean of the
Average Precisions over each query.

Parameters

• empty_target_action¶ (str) – Specify what to do with queries that do not have at least
a positive target. Choose from:

– 'neg': those queries count as 0.0 (default)

– 'pos': those queries count as 1.0

– 'skip': skip those queries; if all queries are skipped, 0.0 is returned

– 'error': raise a ValueError

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather. default: None

2.5. Module metrics 103

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics import RetrievalMAP
>>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
>>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
>>> target = tensor([False, False, True, False, True, False, True])
>>> rmap = RetrievalMAP()
>>> rmap(preds, target, indexes=indexes)
tensor(0.7917)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

RetrievalMRR

class torchmetrics.RetrievalMRR(empty_target_action='neg', compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Computes Mean Reciprocal Rank.

Works with binary target data. Accepts float predictions from a model output.

Forward accepts

• preds (float tensor): (N, ...)

• target (long or bool tensor): (N, ...)

• indexes (long tensor): (N, ...)

indexes, preds and target must have the same dimension. indexes indicate to which query a prediction
belongs. Predictions will be first grouped by indexes and then MRR will be computed as the mean of the
Reciprocal Rank over each query.

Parameters

• empty_target_action¶ (str) – Specify what to do with queries that do not have at least
a positive target. Choose from:

– 'neg': those queries count as 0.0 (default)

– 'pos': those queries count as 1.0

– 'skip': skip those queries; if all queries are skipped, 0.0 is returned

– 'error': raise a ValueError

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather. default: None

104 Chapter 2. More reading

https://en.wikipedia.org/wiki/Mean_reciprocal_rank
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics import RetrievalMRR
>>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
>>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
>>> target = tensor([False, False, True, False, True, False, True])
>>> mrr = RetrievalMRR()
>>> mrr(preds, target, indexes=indexes)
tensor(0.7500)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

RetrievalPrecision

class torchmetrics.RetrievalPrecision(empty_target_action='neg', k=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Computes IR Precision.

Works with binary target data. Accepts float predictions from a model output.

Forward accepts:

• preds (float tensor): (N, ...)

• target (long or bool tensor): (N, ...)

• indexes (long tensor): (N, ...)

indexes, preds and target must have the same dimension. indexes indicate to which query a prediction
belongs. Predictions will be first grouped by indexes and then Precision will be computed as the mean of the
Precision over each query.

Parameters

• empty_target_action¶ (str) – Specify what to do with queries that do not have at least
a positive target. Choose from:

– 'neg': those queries count as 0.0 (default)

– 'pos': those queries count as 1.0

– 'skip': skip those queries; if all queries are skipped, 0.0 is returned

– 'error': raise a ValueError

• k¶ (Optional[int]) – consider only the top k elements for each query (default: None, which
considers them all)

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather. default: None

Raises ValueError – If k parameter is not None or an integer larger than 0

2.5. Module metrics 105

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Precision
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics import RetrievalPrecision
>>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
>>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
>>> target = tensor([False, False, True, False, True, False, True])
>>> p2 = RetrievalPrecision(k=2)
>>> p2(preds, target, indexes=indexes)
tensor(0.5000)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

RetrievalRPrecision

class torchmetrics.RetrievalRPrecision(empty_target_action='neg', compute_on_step=True,
dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Computes IR R-Precision.

Works with binary target data. Accepts float predictions from a model output.

Forward accepts:

• preds (float tensor): (N, ...)

• target (long or bool tensor): (N, ...)

• indexes (long tensor): (N, ...)

indexes, preds and target must have the same dimension. indexes indicate to which query a prediction
belongs. Predictions will be first grouped by indexes and then R-Precision will be computed as the mean of the
R-Precision over each query.

Parameters

• empty_target_action¶ (str) – Specify what to do with queries that do not have at least
a positive target. Choose from:

– 'neg': those queries count as 0.0 (default)

– 'pos': those queries count as 1.0

– 'skip': skip those queries; if all queries are skipped, 0.0 is returned

– 'error': raise a ValueError

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather. default: None

106 Chapter 2. More reading

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#R-precision
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics import RetrievalRPrecision
>>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
>>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
>>> target = tensor([False, False, True, False, True, False, True])
>>> p2 = RetrievalRPrecision()
>>> p2(preds, target, indexes=indexes)
tensor(0.7500)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

RetrievalRecall

class torchmetrics.RetrievalRecall(empty_target_action='neg', k=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Computes IR Recall.

Works with binary target data. Accepts float predictions from a model output.

Forward accepts:

• preds (float tensor): (N, ...)

• target (long or bool tensor): (N, ...)

• indexes (long tensor): (N, ...)

indexes, preds and target must have the same dimension. indexes indicate to which query a prediction
belongs. Predictions will be first grouped by indexes and then Recall will be computed as the mean of the
Recall over each query.

Parameters

• empty_target_action¶ (str) – Specify what to do with queries that do not have at least
a positive target. Choose from:

– 'neg': those queries count as 0.0 (default)

– 'pos': those queries count as 1.0

– 'skip': skip those queries; if all queries are skipped, 0.0 is returned

– 'error': raise a ValueError

• k¶ (Optional[int]) – consider only the top k elements for each query (default: None, which
considers them all)

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather. default: None

Raises ValueError – If k parameter is not None or an integer larger than 0

2.5. Module metrics 107

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Recall
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics import RetrievalRecall
>>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
>>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
>>> target = tensor([False, False, True, False, True, False, True])
>>> r2 = RetrievalRecall(k=2)
>>> r2(preds, target, indexes=indexes)
tensor(0.7500)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

RetrievalFallOut

class torchmetrics.RetrievalFallOut(empty_target_action='pos', k=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Computes Fall-out.

Works with binary target data. Accepts float predictions from a model output.

Forward accepts:

• preds (float tensor): (N, ...)

• target (long or bool tensor): (N, ...)

• indexes (long tensor): (N, ...)

indexes, preds and target must have the same dimension. indexes indicate to which query a prediction
belongs. Predictions will be first grouped by indexes and then Fall-out will be computed as the mean of the
Fall-out over each query.

Parameters

• empty_target_action¶ (str) – Specify what to do with queries that do not have at least
a negative target. Choose from:

– 'neg': those queries count as 0.0 (default)

– 'pos': those queries count as 1.0

– 'skip': skip those queries; if all queries are skipped, 0.0 is returned

– 'error': raise a ValueError

• k¶ (Optional[int]) – consider only the top k elements for each query (default: None, which
considers them all)

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather. default: None

Raises ValueError – If k parameter is not None or an integer larger than 0

108 Chapter 2. More reading

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Fall-out
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics import RetrievalFallOut
>>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
>>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
>>> target = tensor([False, False, True, False, True, False, True])
>>> fo = RetrievalFallOut(k=2)
>>> fo(preds, target, indexes=indexes)
tensor(0.5000)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
First concat state indexes, preds and target since they were stored as lists.

After that, compute list of groups that will help in keeping together predictions about the same query.
Finally, for each group compute the _metric if the number of negative targets is at least 1, otherwise behave
as specified by self.empty_target_action.

Return type Tensor

RetrievalNormalizedDCG

class torchmetrics.RetrievalNormalizedDCG(empty_target_action='neg', k=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Computes Normalized Discounted Cumulative Gain.

Works with binary or positive integer target data. Accepts float predictions from a model output.

Forward accepts:

• preds (float tensor): (N, ...)

• target (long, int, bool or float tensor): (N, ...)

• indexes (long tensor): (N, ...)

indexes, preds and target must have the same dimension. indexes indicate to which query a prediction
belongs. Predictions will be first grouped by indexes and then Normalized Discounted Cumulative Gain will
be computed as the mean of the Normalized Discounted Cumulative Gain over each query.

Parameters

• empty_target_action¶ (str) – Specify what to do with queries that do not have at least
a positive target. Choose from:

– 'neg': those queries count as 0.0 (default)

– 'pos': those queries count as 1.0

– 'skip': skip those queries; if all queries are skipped, 0.0 is returned

– 'error': raise a ValueError

• k¶ (Optional[int]) – consider only the top k elements for each query (default: None, which
considers them all)

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

2.5. Module metrics 109

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Discounted_cumulative_gain
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather. default: None

Raises ValueError – If k parameter is not None or an integer larger than 0

Example

>>> from torchmetrics import RetrievalNormalizedDCG
>>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
>>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
>>> target = tensor([False, False, True, False, True, False, True])
>>> ndcg = RetrievalNormalizedDCG()
>>> ndcg(preds, target, indexes=indexes)
tensor(0.8467)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

RetrievalHitRate

class torchmetrics.RetrievalHitRate(empty_target_action='neg', k=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Computes IR HitRate.

Works with binary target data. Accepts float predictions from a model output.

Forward accepts:

• preds (float tensor): (N, ...)

• target (long or bool tensor): (N, ...)

• indexes (long tensor): (N, ...)

indexes, preds and target must have the same dimension. indexes indicate to which query a prediction
belongs. Predictions will be first grouped by indexes and then the Hit Rate will be computed as the mean of
the Hit Rate over each query.

Parameters

• empty_target_action¶ (str) – Specify what to do with queries that do not have at least
a positive target. Choose from:

– 'neg': those queries count as 0.0 (default)

– 'pos': those queries count as 1.0

– 'skip': skip those queries; if all queries are skipped, 0.0 is returned

– 'error': raise a ValueError

• k¶ (Optional[int]) – consider only the top k elements for each query (default: None, which
considers them all)

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

110 Chapter 2. More reading

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather. default: None

Raises ValueError – If k parameter is not None or an integer larger than 0

Example

>>> from torchmetrics import RetrievalHitRate
>>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
>>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
>>> target = tensor([True, False, False, False, True, False, True])
>>> hr2 = RetrievalHitRate(k=2)
>>> hr2(preds, target, indexes=indexes)
tensor(0.5000)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

2.5.9 Text

BERTScore

class torchmetrics.BERTScore(model_name_or_path=None, num_layers=None, all_layers=False,
model=None, user_tokenizer=None, user_forward_fn=None, verbose=False,
idf=False, device=None, max_length=512, batch_size=64, num_threads=4,
return_hash=False, lang='en', rescale_with_baseline=False,
baseline_path=None, baseline_url=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Bert_score Evaluating Text Generation leverages the pre-trained contextual embeddings from BERT and matches
words in candidate and reference sentences by cosine similarity. It has been shown to correlate with human
judgment on sentence-level and system-level evaluation. Moreover, BERTScore computes precision, recall, and
F1 measure, which can be useful for evaluating different language generation tasks.

This implemenation follows the original implementation from BERT_score.

Parameters

• predictions¶ – An iterable of predicted sentences.

• references¶ – An iterable of target sentences.

• model_type¶ – A name or a model path used to load transformers pretrained model.

• num_layers¶ (Optional[int]) – A layer of representation to use.

• all_layers¶ (bool) – An indication of whether the representation from all model’s layers
should be used. If all_layers = True, the argument num_layers is ignored.

• model¶ (Optional[Module]) – A user’s own model. Must be of torch.nn.Module instance.

• user_tokenizer¶ (Optional[Any]) – A user’s own tokenizer used with the own model.
This must be an instance with the __call__ method. This method must take an iterable of

2.5. Module metrics 111

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1904.09675
https://github.com/Tiiiger/bert_score/blob/master/bert_score/utils.py
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

PyTorch-Metrics Documentation, Release 0.6.2

sentences (List[str]) and must return a python dictionary containing “input_ids” and “atten-
tion_mask” represented by torch.Tensor. It is up to the user’s model of whether “input_ids”
is a torch.Tensor of input ids or embedding vectors. This tokenizer must prepend an equiv-
alent of [CLS] token and append an equivalent of [SEP] token as transformers tokenizer
does.

• user_forward_fn¶ (Optional[Callable[[Module, Dict[str, Tensor]], Tensor]]) –
A user’s own forward function used in a combination with user_model. This function must
take user_model and a python dictionary of containing “input_ids” and “attention_mask”
represented by torch.Tensor as an input and return the model’s output represented by the
single torch.Tensor.

• verbose¶ (bool) – An indication of whether a progress bar to be displayed during the
embeddings calculation.

• idf¶ (bool) – An indication whether normalization using inverse document frequencies
should be used.

• device¶ (Union[str, device, None]) – A device to be used for calculation.

• max_length¶ (int) – A maximum length of input sequences. Sequences longer than
max_length are to be trimmed.

• batch_size¶ (int) – A batch size used for model processing.

• num_threads¶ (int) – A number of threads to use for a dataloader.

• return_hash¶ (bool) – An indication of whether the correspodning hash_code should be
returned.

• lang¶ (str) – A language of input sentences.

• rescale_with_baseline¶ (bool) – An indication of whether bertscore should be rescaled
with a pre-computed baseline. When a pretrained model from transformers model is
used, the corresponding baseline is downloaded from the original bert-score package from
BERT_score if available. In other cases, please specify a path to the baseline csv/tsv file,
which must follow the formatting of the files from BERT_score.

• baseline_path¶ (Optional[str]) – A path to the user’s own local csv/tsv file with the
baseline scale.

• baseline_url¶ (Optional[str]) – A url path to the user’s own csv/tsv file with the base-
line scale.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather

Returns Python dictionary containing the keys precision, recall and f1 with corresponding values.

112 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://github.com/Tiiiger/bert_score/blob/master/bert_score/utils.py
https://github.com/Tiiiger/bert_score/blob/master/bert_score/utils.py
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "master kenobi"]
>>> bertscore = BERTScore()
>>> bertscore.update(predictions=predictions,references=references)
>>> bertscore.compute()
{'precision': [0.99..., 0.99...],
'recall': [0.99..., 0.99...],
'f1': [0.99..., 0.99...]}

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Calculate BERT scores.

Return type Dict[str, Union[List[float], str]]

Returns Python dictionary containing the keys precision, recall and f1 with corresponding val-
ues.

update(predictions, references)
Store predictions/references for computing BERT scores. It is necessary to store sentences in a tokenized
form to ensure the DDP mode working.

Parameters

• predictions¶ (List[str]) – An iterable of predicted sentences.

• references¶ (List[str]) – An iterable of predicted sentences.

Return type None

BLEUScore

class torchmetrics.BLEUScore(n_gram=4, smooth=False, compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Calculate BLEU score of machine translated text with one or more references.

Parameters

• n_gram¶ (int) – Gram value ranged from 1 to 4 (Default 4)

• smooth¶ (bool) – Whether or not to apply smoothing – see [2]

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

2.5. Module metrics 113

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/BLEU
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> translate_corpus = ['the cat is on the mat'.split()]
>>> reference_corpus = [['there is a cat on the mat'.split(), 'a cat is on the mat'.
→˓split()]]
>>> metric = BLEUScore()
>>> metric(reference_corpus, translate_corpus)
tensor(0.7598)

References

[1] BLEU: a Method for Automatic Evaluation of Machine Translation by Papineni, Kishore, Salim Roukos,
Todd Ward, and Wei-Jing Zhu BLEU

[2] Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-
Bigram Statistics by Chin-Yew Lin and Franz Josef Och Machine Translation Evolution

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Calculate BLEU score.

Return type Tensor

Returns Tensor with BLEU Score

update(reference_corpus, translate_corpus)
Compute Precision Scores.

Parameters

• reference_corpus¶ (Sequence[Sequence[Sequence[str]]]) – An iterable of iterables
of reference corpus

• translate_corpus¶ (Sequence[Sequence[str]]) – An iterable of machine translated
corpus

Return type None

CharErrorRate

class torchmetrics.CharErrorRate(compute_on_step=True, dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Character error rate (CharErrorRate) is a metric of the performance of an automatic speech recognition (ASR)
system. This value indicates the percentage of characters that were incorrectly predicted. The lower the value,
the better the performance of the ASR system with a CharErrorRate of 0 being a perfect score. Character error
rate can then be computed as:

𝐶ℎ𝑎𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =
𝑆 + 𝐷 + 𝐼

𝑁
=

𝑆 + 𝐷 + 𝐼

𝑆 + 𝐷 + 𝐶

where:

• S is the number of substitutions,

• D is the number of deletions,

• I is the number of insertions,

• C is the number of correct characters,

114 Chapter 2. More reading

http://www.aclweb.org/anthology/P02-1040.pdf
https://aclanthology.org/P04-1077.pdf
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

• N is the number of characters in the reference (N=S+D+C).

Compute CharErrorRate score of transcribed segments against references.

Parameters

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather

Returns (Tensor) Character error rate

Examples

>>> predictions = ["this is the prediction", "there is an other sample"]
>>> references = ["this is the reference", "there is another one"]
>>> metric = CharErrorRate()
>>> metric(predictions, references)
tensor(0.3415)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Calculate the character error rate.

Return type Tensor

Returns (Tensor) Character error rate

update(predictions, references)
Store references/predictions for computing Character Error Rate scores.

Parameters

• predictions¶ (Union[str, List[str]]) – Transcription(s) to score as a string or list of
strings

• references¶ (Union[str, List[str]]) – Reference(s) for each speech input as a string
or list of strings

Return type None

2.5. Module metrics 115

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

ROUGEScore

class torchmetrics.ROUGEScore(newline_sep=None, use_stemmer=False, rouge_keys=('rouge1', 'rouge2',
'rougeL', 'rougeLsum'), decimal_places=None, compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Calculate Rouge Score, used for automatic summarization. This implementation should imitate the behaviour of
the rouge-score package Python ROUGE Implementation

Parameters

• newline_sep¶ (Optional[bool]) – New line separate the inputs. This argument has not
been in use any more. It is deprecated in v0.6 and will be removed in v0.7.

• use_stemmer¶ (bool) – Use Porter stemmer to strip word suffixes to improve matching.

• rouge_keys¶ (Union[str, Tuple[str, . . .]]) – A list of rouge types to calculate. Keys that
are allowed are rougeL, rougeLsum, and rouge1 through rouge9.

• decimal_places¶ (Optional[bool]) – The number of digits to round the computed the
values to. This argument has not been in usd any more. It is deprecated in v0.6 and will be
removed in v0.7.

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Example

>>> targets = "Is your name John"
>>> preds = "My name is John"
>>> rouge = ROUGEScore()
>>> from pprint import pprint
>>> pprint(rouge(preds, targets))
{'rouge1_fmeasure': 0.25,
'rouge1_precision': 0.25,
'rouge1_recall': 0.25,
'rouge2_fmeasure': 0.0,
'rouge2_precision': 0.0,
'rouge2_recall': 0.0,
'rougeL_fmeasure': 0.25,
'rougeL_precision': 0.25,
'rougeL_recall': 0.25,
'rougeLsum_fmeasure': 0.25,
'rougeLsum_precision': 0.25,
'rougeLsum_recall': 0.25}

Raises

• ValueError – If the python packages nltk is not installed.

116 Chapter 2. More reading

https://en.wikipedia.org/wiki/ROUGE_(metric)
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

• ValueError – If any of the rouge_keys does not belong to the allowed set of keys.

References

[1] ROUGE: A Package for Automatic Evaluation of Summaries by Chin-Yew Lin Rouge Detail

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Calculate (Aggregate and provide confidence intervals) ROUGE score.

Return type Dict[str, Tensor]

Returns Python dictionary of rouge scores for each input rouge key.

update(preds, targets)
Compute rouge scores.

Parameters

• preds¶ (Union[str, List[str]]) – An iterable of predicted sentences or a single pre-
dicted sentence.

• targets¶ (Union[str, List[str]]) – An iterable of target sentences or a single target
sentence.

Return type None

SacreBLEUScore

class torchmetrics.SacreBLEUScore(n_gram=4, smooth=False, tokenize='13a', lowercase=False,
compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Calculate BLEU score [1] of machine translated text with one or more references. This implementation follows
the behaviour of SacreBLEU [2] implementation from https://github.com/mjpost/sacrebleu.

The SacreBLEU implementation differs from the NLTK BLEU implementation in tokenization techniques.

Parameters

• n_gram¶ (int) – Gram value ranged from 1 to 4 (Default 4)

• smooth¶ (bool) – Whether or not to apply smoothing – see [2]

• tokenize¶ (Literal[‘none’, ‘13a’, ‘zh’, ‘intl’, ‘char’]) – Tokenization technique to be used.
(Default ‘13a’) Supported tokenization: [‘none’, ‘13a’, ‘zh’, ‘intl’, ‘char’]

• lowercase¶ (bool) – If True, BLEU score over lowercased text is calculated.

• compute_on_step¶ (bool) – Forward only calls update() and returns None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) –

Callback that performs the allgather operation on the metric state. When None, DDP
will be used to perform the allgather.

2.5. Module metrics 117

https://docs.python.org/3/library/exceptions.html#ValueError
https://aclanthology.org/W04-1013/
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/BLEU
https://github.com/mjpost/sacrebleu
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable

PyTorch-Metrics Documentation, Release 0.6.2

Raises:

ValueError: If tokenize not one of ‘none’, ‘13a’, ‘zh’, ‘intl’ or ‘char’

ValueError: If tokenize is set to ‘intl’ and regex is not installed

Example

>>> translate_corpus = ['the cat is on the mat']
>>> reference_corpus = [['there is a cat on the mat', 'a cat is on the mat']]
>>> metric = SacreBLEUScore()
>>> metric(reference_corpus, translate_corpus)
tensor(0.7598)

References

[1] BLEU: a Method for Automatic Evaluation of Machine Translation by Papineni, Kishore, Salim Roukos,
Todd Ward, and Wei-Jing Zhu BLEU

[2] A Call for Clarity in Reporting BLEU Scores by Matt Post.

[3] Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-
Bigram Statistics by Chin-Yew Lin and Franz Josef Och Machine Translation Evolution

Initializes internal Module state, shared by both nn.Module and ScriptModule.

update(reference_corpus, translate_corpus)
Compute Precision Scores.

Parameters

• reference_corpus¶ (Sequence[Sequence[str]]) – An iterable of iterables of reference
corpus

• translate_corpus¶ (Sequence[str]) – An iterable of machine translated corpus

Return type None

WER

class torchmetrics.WER(concatenate_texts=None, compute_on_step=True, dist_sync_on_step=False,
process_group=None, dist_sync_fn=None)

Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
This value indicates the percentage of words that were incorrectly predicted. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score. Word error rate can then be computed
as:

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
=

𝑆 + 𝐷 + 𝐼

𝑆 + 𝐷 + 𝐶

where:

• S is the number of substitutions,

• D is the number of deletions,

• I is the number of insertions,

• C is the number of correct words,

118 Chapter 2. More reading

http://www.aclweb.org/anthology/P02-1040.pdf
https://aclanthology.org/P04-1077.pdf
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Word_error_rate

PyTorch-Metrics Documentation, Release 0.6.2

• N is the number of words in the reference (N=S+D+C).

Compute WER score of transcribed segments against references.

Parameters

• concatenate_texts¶ (Optional[bool]) – Whether to concatenate all input texts or com-
pute WER iteratively. This argument is deprecated in v0.6 and it will be removed in v0.7.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False. default: True

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step. default: False

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather

Returns (Tensor) Word error rate

Examples

>>> predictions = ["this is the prediction", "there is an other sample"]
>>> references = ["this is the reference", "there is another one"]
>>> metric = WER()
>>> metric(predictions, references)
tensor(0.5000)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Calculate the word error rate.

Return type Tensor

Returns (Tensor) Word error rate

update(predictions, references)
Store references/predictions for computing Word Error Rate scores.

Parameters

• predictions¶ (Union[str, List[str]]) – Transcription(s) to score as a string or list of
strings

• references¶ (Union[str, List[str]]) – Reference(s) for each speech input as a string
or list of strings

Return type None

2.5. Module metrics 119

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

PyTorch-Metrics Documentation, Release 0.6.2

2.5.10 Wrappers

Modular wrapper metrics are not metrics in themself, but instead take a metric and alter the internal logic of the base
metric.

BootStrapper

class torchmetrics.BootStrapper(base_metric, num_bootstraps=10, mean=True, std=True, quantile=None,
raw=False, sampling_strategy='poisson', compute_on_step=True,
dist_sync_on_step=False, process_group=None, dist_sync_fn=None)

Using Turn a Metric into a Bootstrapped That can automate the process of getting confidence intervals for metric
values. This wrapper class basically keeps multiple copies of the same base metric in memory and whenever
update or forward is called, all input tensors are resampled (with replacement) along the first dimension.

Parameters

• base_metric¶ (Metric) – base metric class to wrap

• num_bootstraps¶ (int) – number of copies to make of the base metric for bootstrapping

• mean¶ (bool) – if True return the mean of the bootstraps

• std¶ (bool) – if True return the standard diviation of the bootstraps

• quantile¶ (Union[float, Tensor, None]) – if given, returns the quantile of the bootstraps.
Can only be used with pytorch version 1.6 or higher

• raw¶ (bool) – if True, return all bootstrapped values

• sampling_strategy¶ (str) – Determines how to produce bootstrapped samplings. Either
'poisson' or multinomial. If 'possion' is chosen, the number of times each sample
will be included in the bootstrap will be given by 𝑛 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 1), which approximates
the true bootstrap distribution when the number of samples is large. If 'multinomial' is
chosen, we will apply true bootstrapping at the batch level to approximate bootstrapping over
the hole dataset.

• compute_on_step¶ (bool) – Forward only calls update() and return None if this is set
to False.

• dist_sync_on_step¶ (bool) – Synchronize metric state across processes at each
forward() before returning the value at the step

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Callback that performs the allgather operation
on the metric state. When None, DDP will be used to perform the allgather.

Example::

>>> from pprint import pprint
>>> from torchmetrics import Accuracy, BootStrapper
>>> _ = torch.manual_seed(123)
>>> base_metric = Accuracy()
>>> bootstrap = BootStrapper(base_metric, num_bootstraps=20)
>>> bootstrap.update(torch.randint(5, (20,)), torch.randint(5, (20,)))
>>> output = bootstrap.compute()
>>> pprint(output)
{'mean': tensor(0.2205), 'std': tensor(0.0859)}

120 Chapter 2. More reading

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable

PyTorch-Metrics Documentation, Release 0.6.2

compute()
Computes the bootstrapped metric values.

Allways returns a dict of tensors, which can contain the following keys: mean, std, quantile and raw
depending on how the class was initialized

Return type Dict[str, Tensor]

update(*args, **kwargs)
Updates the state of the base metric.

Any tensor passed in will be bootstrapped along dimension 0

Return type None

MetricTracker

class torchmetrics.MetricTracker(metric, maximize=True)
A wrapper class that can help keeping track of a metric over time and implement useful methods. The wrapper
implements the standard update, compute, reset methods that just calls corresponding method of the currently
tracked metric. However, the following additional methods are provided:

-MetricTracker.n_steps: number of metrics being tracked

-MetricTracker.increment(): initialize a new metric for being tracked

-MetricTracker.compute_all(): get the metric value for all steps

-MetricTracker.best_metric(): returns the best value

Parameters

• metric¶ (Metric) – instance of a torchmetric modular to keep track of at each timestep.

• maximize¶ (bool) – bool indicating if higher metric values are better (True) or lower is
better (False)

Example

>>> from torchmetrics import Accuracy, MetricTracker
>>> _ = torch.manual_seed(42)
>>> tracker = MetricTracker(Accuracy(num_classes=10))
>>> for epoch in range(5):
... tracker.increment()
... for batch_idx in range(5):
... preds, target = torch.randint(10, (100,)), torch.randint(10, (100,))
... tracker.update(preds, target)
... print(f"current acc={tracker.compute()}")
current acc=0.1120000034570694
current acc=0.08799999952316284
current acc=0.12600000202655792
current acc=0.07999999821186066
current acc=0.10199999809265137
>>> best_acc, which_epoch = tracker.best_metric(return_step=True)
>>> tracker.compute_all()
tensor([0.1120, 0.0880, 0.1260, 0.0800, 0.1020])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

2.5. Module metrics 121

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

best_metric(return_step=False)
Returns the highest metric out of all tracked.

Parameters return_step¶ (bool) – If True will also return the step with the highest metric
value.

Return type Union[float, Tuple[int, float]]

Returns The best metric value, and optionally the timestep.

compute()
Call compute of the current metric being tracked.

Return type Any

compute_all()
Compute the metric value for all tracked metrics.

Return type Tensor

forward(*args, **kwargs)
Calls forward of the current metric being tracked.

Return type None

increment()
Creates a new instace of the input metric that will be updated next.

Return type None

reset()
Resets the current metric being tracked.

Return type None

reset_all()
Resets all metrics being tracked.

Return type None

update(*args, **kwargs)
Updates the current metric being tracked.

Return type None

property n_steps: int
Returns the number of times the tracker has been incremented.

Return type int

MultioutputWrapper

class torchmetrics.MultioutputWrapper(base_metric, num_outputs, output_dim=- 1, remove_nans=True,
squeeze_outputs=True, compute_on_step=True,
dist_sync_on_step=False, process_group=None,
dist_sync_fn=None)

Wrap a base metric to enable it to support multiple outputs.

Several torchmetrics metrics, such as torchmetrics.regression.spearman.SpearmanCorrcoef lack sup-
port for multioutput mode. This class wraps such metrics to support computing one metric per output. Unlike spe-
cific torchmetric metrics, it doesn’t support any aggregation across outputs. This means if you set num_outputs
to 2, compute() will return a Tensor of dimension (2, . . .) where . . . represents the dimensions the metric returns
when not wrapped.

122 Chapter 2. More reading

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyTorch-Metrics Documentation, Release 0.6.2

In addition to enabling multioutput support for metrics that lack it, this class also supports, albeit in a crude
fashion, dealing with missing labels (or other data). When remove_nans is passed, the class will remove the
intersection of NaN containing “rows” upon each update for each output. For example, suppose a user uses
MultioutputWrapper to wrap torchmetrics.regression.r2.R2Score with 2 outputs, one of which occa-
sionally has missing labels for classes like R2Score is that this class supports removing NaN values (parameter
remove_nans) on a per-output basis. When remove_nans is passed the wrapper will remove all rows

Parameters

• base_metric¶ (Metric) – Metric being wrapped.

• num_outputs¶ (int) – Expected dimensionality of the output dimension. This parameter
is used to determine the number of distinct metrics we need to track.

• output_dim¶ (int) – Dimension on which output is expected. Note that while this provides
some flexibility, the output dimension must be the same for all inputs to update. This applies
even for metrics such as Accuracy where the labels can have a different number of dimensions
than the predictions. This can be worked around if the output dimension can be set to -1 for
both, even if -1 corresponds to different dimensions in different inputs.

• remove_nans¶ (bool) – Whether to remove the intersection of rows containing NaNs from
the values passed through to each underlying metric. Proper operation requires all tensors
passed to update to have dimension (N, . . .) where N represents the length of the batch or
dataset being passed in.

• squeeze_outputs¶ (bool) – If true, will squeeze the 1-item dimensions left after in-
dex_select is applied. This is sometimes unnecessary but harmless for metrics such as
R2Score but useful for certain classification metrics that can’t handle additional 1-item di-
mensions.

• compute_on_step¶ (bool) – Whether to recompute the metric value on each update step.

• dist_sync_on_step¶ (bool) – Required for distributed training support.

• process_group¶ (Optional[Any]) – Specify the process group on which synchronization
is called. The default: None (which selects the entire world)

• dist_sync_fn¶ (Optional[Callable]) – Required for distributed training support.

Example

>>> # Mimic R2Score in `multioutput`, `raw_values` mode:
>>> import torch
>>> from torchmetrics import MultioutputWrapper, R2Score
>>> target = torch.tensor([[0.5, 1], [-1, 1], [7, -6]])
>>> preds = torch.tensor([[0, 2], [-1, 2], [8, -5]])
>>> r2score = MultioutputWrapper(R2Score(), 2)
>>> r2score(preds, target)
[tensor(0.9654), tensor(0.9082)]
>>> # Classification metric where prediction and label tensors have different␣
→˓shapes.
>>> from torchmetrics import BinnedAveragePrecision
>>> target = torch.tensor([[1, 2], [2, 0], [1, 2]])
>>> preds = torch.tensor([
... [[.1, .8], [.8, .05], [.1, .15]],
... [[.1, .1], [.2, .3], [.7, .6]],
... [[.002, .4], [.95, .45], [.048, .15]]

(continues on next page)

2.5. Module metrics 123

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable

PyTorch-Metrics Documentation, Release 0.6.2

(continued from previous page)

...])
>>> binned_avg_precision = MultioutputWrapper(BinnedAveragePrecision(3,␣
→˓thresholds=5), 2)
>>> binned_avg_precision(preds, target)
[[tensor(-0.), tensor(1.0000), tensor(1.0000)], [tensor(0.3333), tensor(-0.),␣
→˓tensor(0.6667)]]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()
Compute metrics.

Return type List[Tensor]

forward(*args, **kwargs)
Call underlying forward methods and aggregate the results if they’re non-null.

We override this method to ensure that state variables get copied over on the underlying metrics.

Return type Any

reset()
Reset all underlying metrics.

Return type None

update(*args, **kwargs)
Update each underlying metric with the corresponding output.

Return type None

2.6 Functional metrics

2.6.1 Audio Metrics

pesq [func]

torchmetrics.functional.pesq(preds, target, fs, mode, keep_same_device=False)
PESQ (Perceptual Evaluation of Speech Quality)

This is a wrapper for the pesq package [1]. Note that input will be moved to cpu to perform the metric calculation.

Note: using this metrics requires you to have pesq install. Either install as pip install
torchmetrics[audio] or pip install pesq

Parameters

• preds¶ (Tensor) – shape [...,time]

• target¶ (Tensor) – shape [...,time]

• fs¶ (int) – sampling frequency, should be 16000 or 8000 (Hz)

• mode¶ (str) – ‘wb’ (wide-band) or ‘nb’ (narrow-band)

• keep_same_device¶ (bool) – whether to move the pesq value to the device of preds

124 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

Return type Tensor

Returns pesq value of shape [. . .]

Raises

• ValueError – If peqs package is not installed

• ValueError – If fs is not either 8000 or 16000

• ValueError – If mode is not either "wb" or "nb"

Example

>>> from torchmetrics.functional.audio import pesq
>>> import torch
>>> g = torch.manual_seed(1)
>>> preds = torch.randn(8000)
>>> target = torch.randn(8000)
>>> pesq(preds, target, 8000, 'nb')
tensor(2.2076)
>>> pesq(preds, target, 16000, 'wb')
tensor(1.7359)

References

[1] https://github.com/ludlows/python-pesq

pit [func]

torchmetrics.functional.pit(preds, target, metric_func, eval_func='max', **kwargs)
Permutation invariant training (PIT). The PIT implements the famous Permutation Invariant Training method.

[1] in speech separation field in order to calculate audio metrics in a permutation invariant way.

Parameters

• preds¶ (Tensor) – shape [batch, spk, . . .]

• target¶ (Tensor) – shape [batch, spk, . . .]

• metric_func¶ (Callable) – a metric function accept a batch of target and estimate, i.e.
metric_func(preds[:, i, . . .], target[:, j, . . .]), and returns a batch of metric tensors [batch]

• eval_func¶ (str) – the function to find the best permutation, can be ‘min’ or ‘max’, i.e.
the smaller the better or the larger the better.

• kwargs¶ (Dict[str, Any]) – additional args for metric_func

Return type Tuple[Tensor, Tensor]

Returns best_metric of shape [batch], best_perm of shape [batch]

2.6. Functional metrics 125

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/ludlows/python-pesq
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics.functional.audio import si_sdr
>>> # [batch, spk, time]
>>> preds = torch.tensor([[[-0.0579, 0.3560, -0.9604], [-0.1719, 0.3205, 0.
→˓2951]]])
>>> target = torch.tensor([[[1.0958, -0.1648, 0.5228], [-0.4100, 1.1942, -0.
→˓5103]]])
>>> best_metric, best_perm = pit(preds, target, si_sdr, 'max')
>>> best_metric
tensor([-5.1091])
>>> best_perm
tensor([[0, 1]])
>>> pit_permutate(preds, best_perm)
tensor([[[-0.0579, 0.3560, -0.9604],

[-0.1719, 0.3205, 0.2951]]])

Reference: [1] Permutation Invariant Training of Deep Models

si_sdr [func]

torchmetrics.functional.si_sdr(preds, target, zero_mean=False)
Calculates Scale-invariant signal-to-distortion ratio (SI-SDR) metric. The SI-SDR value is in general considered
an overall measure of how good a source sound.

Parameters

• preds¶ (Tensor) – shape [...,time]

• target¶ (Tensor) – shape [...,time]

• zero_mean¶ (bool) – If to zero mean target and preds or not

Return type Tensor

Returns si-sdr value of shape [. . .]

Example

>>> from torchmetrics.functional.audio import si_sdr
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> si_sdr_val = si_sdr(preds, target)
>>> si_sdr_val
tensor(18.4030)

126 Chapter 2. More reading

https://ieeexplore.ieee.org/document/7952154
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 2019.

si_snr [func]

torchmetrics.functional.si_snr(preds, target)
Scale-invariant signal-to-noise ratio (SI-SNR).

Parameters

• preds¶ (Tensor) – shape [...,time]

• target¶ (Tensor) – shape [...,time]

Return type Tensor

Returns si-snr value of shape [. . .]

Example

>>> import torch
>>> from torchmetrics.functional.audio import si_snr
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> si_snr_val = si_snr(preds, target)
>>> si_snr_val
tensor(15.0918)

References

[1] Y. Luo and N. Mesgarani, “TaSNet: Time-Domain Audio Separation Network for Real-Time, Single-Channel
Speech Separation,” 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2018, pp. 696-700, doi: 10.1109/ICASSP.2018.8462116.

snr [func]

torchmetrics.functional.snr(preds, target, zero_mean=False)
Signal-to-noise ratio (SNR):

SNR =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒

where 𝑃 denotes the power of each signal. The SNR metric compares the level of the desired signal to the level
of background noise. Therefore, a high value of SNR means that the audio is clear.

Parameters

• preds¶ (Tensor) – shape [...,time]

• target¶ (Tensor) – shape [...,time]

• zero_mean¶ (bool) – if to zero mean target and preds or not

Return type Tensor

2.6. Functional metrics 127

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Signal-to-noise_ratio
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

Returns snr value of shape [. . .]

Example

>>> from torchmetrics.functional.audio import snr
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> snr_val = snr(preds, target)
>>> snr_val
tensor(16.1805)

References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) 2019.

stoi [func]

torchmetrics.functional.stoi(preds, target, fs, extended=False, keep_same_device=False)
STOI (Short Term Objective Intelligibility, see [2,3]), a wrapper for the pystoi package [1]. Note that input will
be moved to cpu to perform the metric calculation.

Intelligibility measure which is highly correlated with the intelligibility of degraded speech signals, e.g., due to
additive noise, single/multi-channel noise reduction, binary masking and vocoded speech as in CI simulations.
The STOI-measure is intrusive, i.e., a function of the clean and degraded speech signals. STOI may be a good
alternative to the speech intelligibility index (SII) or the speech transmission index (STI), when you are interested
in the effect of nonlinear processing to noisy speech, e.g., noise reduction, binary masking algorithms, on speech
intelligibility. Description taken from [Cees Taal’s website](http://www.ceestaal.nl/code/).

Note: using this metrics requires you to have pystoi install. Either install as pip install
torchmetrics[audio] or pip install pystoi

Parameters

• preds¶ (Tensor) – shape [...,time]

• target¶ (Tensor) – shape [...,time]

• fs¶ (int) – sampling frequency (Hz)

• extended¶ (bool) – whether to use the extended STOI described in [4]

• keep_same_device¶ (bool) – whether to move the stoi value to the device of preds

Return type Tensor

Returns stoi value of shape [. . .]

Raises ValueError – If pystoi package is not installed

128 Chapter 2. More reading

http://www.ceestaal.nl/code/
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics.functional.audio import stoi
>>> import torch
>>> g = torch.manual_seed(1)
>>> preds = torch.randn(8000)
>>> target = torch.randn(8000)
>>> stoi(preds, target, 8000).float()
tensor(-0.0100)

References

[1] https://github.com/mpariente/pystoi

[2] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen ‘A Short-Time Objective Intelligibility Measure for Time-
Frequency Weighted Noisy Speech’, ICASSP 2010, Texas, Dallas.

[3] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen ‘An Algorithm for Intelligibility Prediction of Time-
Frequency Weighted Noisy Speech’, IEEE Transactions on Audio, Speech, and Language Processing, 2011.

[4] J. Jensen and C. H. Taal, ‘An Algorithm for Predicting the Intelligibility of Speech Masked by Modulated
Noise Maskers’, IEEE Transactions on Audio, Speech and Language Processing, 2016.

2.6.2 Classification Metrics

accuracy [func]

torchmetrics.functional.accuracy(preds, target, average='micro', mdmc_average='global', threshold=0.5,
top_k=None, subset_accuracy=False, num_classes=None,
multiclass=None, ignore_index=None)

Computes Accuracy

Accuracy =
1

𝑁

𝑁∑︁
𝑖

1(𝑦𝑖 = 𝑦𝑖)

Where 𝑦 is a tensor of target values, and 𝑦 is a tensor of predictions.

For multi-class and multi-dimensional multi-class data with probability or logits predictions, the parameter
top_k generalizes this metric to a Top-K accuracy metric: for each sample the top-K highest probability or
logits items are considered to find the correct label.

For multi-label and multi-dimensional multi-class inputs, this metric computes the “global” accuracy by default,
which counts all labels or sub-samples separately. This can be changed to subset accuracy (which requires all
labels or sub-samples in the sample to be correctly predicted) by setting subset_accuracy=True.

Accepts all input types listed in Input types.

Parameters

• preds¶ (Tensor) – Predictions from model (probabilities, logits or labels)

• target¶ (Tensor) – Ground truth labels

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

2.6. Functional metrics 129

https://github.com/mpariente/pystoi
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tp + fn).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

Note: If 'none' and a given class doesn’t occur in the preds or target, the value for the
class will be nan.

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• subset_accuracy¶ (bool) – Whether to compute subset accuracy for multi-label and
multi-dimensional multi-class inputs (has no effect for other input types).

130 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

– For multi-label inputs, if the parameter is set to True, then all labels for each sample must
be correctly predicted for the sample to count as correct. If it is set to False, then all labels
are counted separately - this is equivalent to flattening inputs beforehand (i.e. preds =
preds.flatten() and same for target).

– For multi-dimensional multi-class inputs, if the parameter is set to True, then all sub-
sample (on the extra axis) must be correct for the sample to be counted as correct. If it is
set to False, then all sub-samples are counter separately - this is equivalent, in the case of
label predictions, to flattening the inputs beforehand (i.e. preds = preds.flatten()
and same for target). Note that the top_k parameter still applies in both cases, if set.

Raises

• ValueError – If top_k parameter is set for multi-label inputs.

• ValueError – If average is none of "micro", "macro", "weighted", "samples",
"none", None.

• ValueError – If mdmc_average is not one of None, "samplewise", "global".

• ValueError – If average is set but num_classes is not provided.

• ValueError – If num_classes is set and ignore_index is not in the range [0,
num_classes).

• ValueError – If top_k is not an integer larger than 0.

Example

>>> import torch
>>> from torchmetrics.functional import accuracy
>>> target = torch.tensor([0, 1, 2, 3])
>>> preds = torch.tensor([0, 2, 1, 3])
>>> accuracy(preds, target)
tensor(0.5000)

>>> target = torch.tensor([0, 1, 2])
>>> preds = torch.tensor([[0.1, 0.9, 0], [0.3, 0.1, 0.6], [0.2, 0.5, 0.3]])
>>> accuracy(preds, target, top_k=2)
tensor(0.6667)

Return type Tensor

auc [func]

torchmetrics.functional.auc(x, y, reorder=False)
Computes Area Under the Curve (AUC) using the trapezoidal rule.

Parameters

• x¶ (Tensor) – x-coordinates, must be either increasing or decreasing

• y¶ (Tensor) – y-coordinates

• reorder¶ (bool) – if True, will reorder the arrays to make it either increasing or decreasing

Return type Tensor

2.6. Functional metrics 131

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

Returns Tensor containing AUC score (float)

Raises

• ValueError – If both x and y tensors are not 1d.

• ValueError – If both x and y don’t have the same numnber of elements.

• ValueError – If x tesnsor is neither increasing or decreasing.

Example

>>> from torchmetrics.functional import auc
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> auc(x, y)
tensor(4.)
>>> auc(x, y, reorder=True)
tensor(4.)

auroc [func]

torchmetrics.functional.auroc(preds, target, num_classes=None, pos_label=None, average='macro',
max_fpr=None, sample_weights=None)

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC)

For non-binary input, if the preds and target tensor have the same size the input will be interpretated as
multilabel and if preds have one dimension more than the target tensor the input will be interpretated as
multiclass.

Note: If either the positive class or negative class is completly missing in the target tensor, the auroc score is
meaningless in this case and a score of 0 will be returned together with an warning.

Parameters

• preds¶ (Tensor) – predictions from model (logits or probabilities)

• target¶ (Tensor) – Ground truth labels

• num_classes¶ (Optional[int]) – integer with number of classes for multi-label and mul-
ticlass problems. Should be set to None for binary problems

• pos_label¶ (Optional[int]) – integer determining the positive class. Default is None
which for binary problem is translate to 1. For multiclass problems this argument should not
be set as we iteratively change it in the range [0,num_classes-1]

• average¶ (Optional[str]) –

– 'micro' computes metric globally. Only works for multilabel problems

– 'macro' computes metric for each class and uniformly averages them

– 'weighted' computes metric for each class and does a weighted-average, where each
class is weighted by their support (accounts for class imbalance)

– None computes and returns the metric per class

132 Chapter 2. More reading

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Further_interpretations
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

• max_fpr¶ (Optional[float]) – If not None, calculates standardized partial AUC over the
range [0, max_fpr]. Should be a float between 0 and 1.

• sample_weights¶ (Optional[Sequence]) – sample weights for each data point

Raises

• ValueError – If max_fpr is not a float in the range (0, 1].

• RuntimeError – If PyTorch version is below 1.6 since max_fpr requires
torch.bucketize which is not available below 1.6.

• ValueError – If max_fpr is not set to None and the mode is not binary since partial
AUC computation is not available in multilabel/multiclass.

• ValueError – If average is none of None, "macro" or "weighted".

Example (binary case):

>>> from torchmetrics.functional import auroc
>>> preds = torch.tensor([0.13, 0.26, 0.08, 0.19, 0.34])
>>> target = torch.tensor([0, 0, 1, 1, 1])
>>> auroc(preds, target, pos_label=1)
tensor(0.5000)

Example (multiclass case):

>>> preds = torch.tensor([[0.90, 0.05, 0.05],
... [0.05, 0.90, 0.05],
... [0.05, 0.05, 0.90],
... [0.85, 0.05, 0.10],
... [0.10, 0.10, 0.80]])
>>> target = torch.tensor([0, 1, 1, 2, 2])
>>> auroc(preds, target, num_classes=3)
tensor(0.7778)

Return type Tensor

average_precision [func]

torchmetrics.functional.average_precision(preds, target, num_classes=None, pos_label=None,
average='macro', sample_weights=None)

Computes the average precision score.

Parameters

• preds¶ (Tensor) – predictions from model (logits or probabilities)

• target¶ (Tensor) – ground truth values

• num_classes¶ (Optional[int]) – integer with number of classes. Not nessesary to pro-
vide for binary problems.

• pos_label¶ (Optional[int]) – integer determining the positive class. Default is None
which for binary problem is translate to 1. For multiclass problems this argument should not
be set as we iteratively change it in the range [0,num_classes-1]

• average¶ (Optional[str]) – defines the reduction that is applied in the case of multiclass
and multilabel input. Should be one of the following:

2.6. Functional metrics 133

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

– 'macro' [default]: Calculate the metric for each class separately, and average the metrics
across classes (with equal weights for each class).

– 'micro': Calculate the metric globally, across all samples and classes. Cannot be used
with multiclass input.

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support.

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

• sample_weights¶ (Optional[Sequence]) – sample weights for each data point

Return type Union[List[Tensor], Tensor]

Returns tensor with average precision. If multiclass will return list of such tensors, one for each class

Example (binary case):

>>> from torchmetrics.functional import average_precision
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 1, 1])
>>> average_precision(pred, target, pos_label=1)
tensor(1.)

Example (multiclass case):

>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> average_precision(pred, target, num_classes=5, average=None)
[tensor(1.), tensor(1.), tensor(0.2500), tensor(0.2500), tensor(nan)]

calibration_error [func]

torchmetrics.functional.calibration_error(preds, target, n_bins=15, norm='l1')
Computes the Top-label Calibration Error

Three different norms are implemented, each corresponding to variations on the calibration error metric.

L1 norm (Expected Calibration Error)

ECE =
1

𝑁

𝑁∑︁
𝑖

‖(𝑝𝑖 − 𝑐𝑖)‖

Infinity norm (Maximum Calibration Error)

RMSCE = max
𝑖

(𝑝𝑖 − 𝑐𝑖)

L2 norm (Root Mean Square Calibration Error)

MCE =
1

𝑁

𝑁∑︁
𝑖

(𝑝𝑖 − 𝑐𝑖)
2

Where 𝑝𝑖 is the top-1 prediction accuracy in bin i and 𝑐𝑖 is the average confidence of predictions in bin i.

134 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://arxiv.org/pdf/1909.10155.pdf

PyTorch-Metrics Documentation, Release 0.6.2

Parameters

• preds¶ (Tensor) – Model output probabilities.

• target¶ (Tensor) – Ground-truth target class labels.

• n_bins¶ (int, optional) – Number of bins to use when computing t. Defaults to 15.

• norm¶ (str, optional) – Norm used to compare empirical and expected probability bins.
Defaults to “l1”, or Expected Calibration Error.

Return type Tensor

cohen_kappa [func]

torchmetrics.functional.cohen_kappa(preds, target, num_classes, weights=None, threshold=0.5)

Calculates Cohen’s kappa score that measures inter-annotator agreement. It is defined as

𝜅 = (𝑝𝑜 − 𝑝𝑒)/(1 − 𝑝𝑒)

where 𝑝𝑜 is the empirical probability of agreement and 𝑝𝑒 isg the expected agreement when both annotators
assign labels randomly. Note that 𝑝𝑒 is estimated using a per-annotator empirical prior over the class labels.

Args:

preds: (float or long tensor), Either a (N, ...) tensor with labels or (N, C, ...) where C is
the number of classes, tensor with labels/probabilities

target: target (long tensor), tensor with shape (N, ...) with ground true labels

num_classes: Number of classes in the dataset.

weights: Weighting type to calculate the score. Choose from

• None or 'none': no weighting

• 'linear': linear weighting

• 'quadratic': quadratic weighting

threshold: Threshold value for binary or multi-label probabilities. default: 0.5

Example:

>>> from torchmetrics.functional import cohen_kappa
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> cohen_kappa(preds, target, num_classes=2)
tensor(0.5000)

Return type Tensor

2.6. Functional metrics 135

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

confusion_matrix [func]

torchmetrics.functional.confusion_matrix(preds, target, num_classes, normalize=None, threshold=0.5,
multilabel=False)

Computes the confusion matrix. Works with binary, multiclass, and multilabel data. Accepts probabilities or
logits from a model output or integer class values in prediction. Works with multi-dimensional preds and target,
but it should be noted that additional dimensions will be flattened.

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument to
convert into integer labels. This is the case for binary and multi-label probabilities or logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

If working with multilabel data, setting the is_multilabel argument to True will make sure that a confusion matrix
gets calculated per label.

Parameters

• preds¶ (Tensor) – (float or long tensor), Either a (N, ...) tensor with labels or (N, C,
...) where C is the number of classes, tensor with labels/logits/probabilities

• target¶ (Tensor) – target (long tensor), tensor with shape (N, ...) with ground true
labels

• num_classes¶ (int) – Number of classes in the dataset.

• normalize¶ (Optional[str]) – Normalization mode for confusion matrix. Choose from

– None or 'none': no normalization (default)

– 'true': normalization over the targets (most commonly used)

– 'pred': normalization over the predictions

– 'all': normalization over the whole matrix

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• multilabel¶ (bool) – determines if data is multilabel or not.

Example (binary data):

>>> from torchmetrics import ConfusionMatrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> confmat = ConfusionMatrix(num_classes=2)
>>> confmat(preds, target)
tensor([[2., 0.],

[1., 1.]])

Example (multiclass data):

>>> target = torch.tensor([2, 1, 0, 0])
>>> preds = torch.tensor([2, 1, 0, 1])
>>> confmat = ConfusionMatrix(num_classes=3)
>>> confmat(preds, target)
tensor([[1., 1., 0.],

[0., 1., 0.],
[0., 0., 1.]])

136 Chapter 2. More reading

https://en.wikipedia.org/wiki/Confusion_matrix#Table_of_confusion
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PyTorch-Metrics Documentation, Release 0.6.2

Example (multilabel data):

>>> target = torch.tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = torch.tensor([[0, 0, 1], [1, 0, 1]])
>>> confmat = ConfusionMatrix(num_classes=3, multilabel=True)
>>> confmat(preds, target)
tensor([[[1., 0.], [0., 1.]],

[[1., 0.], [1., 0.]],
[[0., 1.], [0., 1.]]])

Return type Tensor

dice_score [func]

torchmetrics.functional.dice_score(preds, target, bg=False, nan_score=0.0, no_fg_score=0.0,
reduction='elementwise_mean')

Compute dice score from prediction scores.

Parameters

• preds¶ (Tensor) – estimated probabilities

• target¶ (Tensor) – ground-truth labels

• bg¶ (bool) – whether to also compute dice for the background

• nan_score¶ (float) – score to return, if a NaN occurs during computation

• no_fg_score¶ (float) – score to return, if no foreground pixel was found in target

• reduction¶ (str) – a method to reduce metric score over labels.

– 'elementwise_mean': takes the mean (default)

– 'sum': takes the sum

– 'none': no reduction will be applied

Return type Tensor

Returns Tensor containing dice score

Example

>>> from torchmetrics.functional import dice_score
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
... [0.05, 0.85, 0.05, 0.05],
... [0.05, 0.05, 0.85, 0.05],
... [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> dice_score(pred, target)
tensor(0.3333)

2.6. Functional metrics 137

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

f1 [func]

torchmetrics.functional.f1(preds, target, beta=1.0, average='micro', mdmc_average=None,
ignore_index=None, num_classes=None, threshold=0.5, top_k=None,
multiclass=None)

Computes F1 metric. F1 metrics correspond to a equally weighted average of the precision and recall scores.

Works with binary, multiclass, and multilabel data. Accepts probabilities or logits from a model output or integer
class values in prediction. Works with multi-dimensional preds and target.

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument to
convert into integer labels. This is the case for binary and multi-label probabilities or logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

The reduction method (how the precision scores are aggregated) is controlled by the average parameter, and
additionally by the mdmc_average parameter in the multi-dimensional multi-class case. Accepts all inputs listed
in Input types.

Parameters

• preds¶ (Tensor) – Predictions from model (probabilities, logits or labels)

• target¶ (Tensor) – Ground truth values

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tp + fn).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

Note: If 'none' and a given class doesn’t occur in the preds or target, the value for the
class will be nan.

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

138 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

Return type Tensor

Returns

The shape of the returned tensor depends on the average parameter

• If average in ['micro', 'macro', 'weighted', 'samples'], a one-element ten-
sor will be returned

• If average in ['none', None], the shape will be (C,), where C stands for the number
of classes

Example

>>> from torchmetrics.functional import f1
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
>>> f1(preds, target, num_classes=3)
tensor(0.3333)

fbeta [func]

torchmetrics.functional.fbeta(preds, target, beta=1.0, average='micro', mdmc_average=None,
ignore_index=None, num_classes=None, threshold=0.5, top_k=None,
multiclass=None)

Computes f_beta metric.

𝐹𝛽 = (1 + 𝛽2) * precision * recall
(𝛽2 * precision) + recall

Works with binary, multiclass, and multilabel data. Accepts probabilities or logits from a model output or integer
class values in prediction. Works with multi-dimensional preds and target.

2.6. Functional metrics 139

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument to
convert into integer labels. This is the case for binary and multi-label logits or probabilities.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

The reduction method (how the precision scores are aggregated) is controlled by the average parameter, and
additionally by the mdmc_average parameter in the multi-dimensional multi-class case. Accepts all inputs listed
in Input types.

Parameters

• preds¶ (Tensor) – Predictions from model (probabilities, logits or labels)

• target¶ (Tensor) – Ground truth values

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tp + fn).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

Note: If 'none' and a given class doesn’t occur in the preds or target, the value for the
class will be nan.

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

140 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

PyTorch-Metrics Documentation, Release 0.6.2

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

Return type Tensor

Returns

The shape of the returned tensor depends on the average parameter

• If average in ['micro', 'macro', 'weighted', 'samples'], a one-element ten-
sor will be returned

• If average in ['none', None], the shape will be (C,), where C stands for the number
of classes

Example

>>> from torchmetrics.functional import fbeta
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
>>> fbeta(preds, target, num_classes=3, beta=0.5)
tensor(0.3333)

hamming_distance [func]

torchmetrics.functional.hamming_distance(preds, target, threshold=0.5)
Computes the average Hamming distance (also known as Hamming loss) between targets and predictions:

Hamming distance =
1

𝑁 · 𝐿

𝑁∑︁
𝑖

𝐿∑︁
𝑙

1(𝑦𝑖𝑙 ̸= 𝑦𝑖𝑙)

Where 𝑦 is a tensor of target values, 𝑦 is a tensor of predictions, and ∙𝑖𝑙 refers to the 𝑙-th label of the 𝑖-th sample
of that tensor.

This is the same as 1-accuracy for binary data, while for all other types of inputs it treats each possible label
separately - meaning that, for example, multi-class data is treated as if it were multi-label.

Accepts all input types listed in Input types.

Parameters

• preds¶ (Tensor) – Predictions from model (probabilities, logits or labels)

• target¶ (Tensor) – Ground truth

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

2.6. Functional metrics 141

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Hamming_distance
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics.functional import hamming_distance
>>> target = torch.tensor([[0, 1], [1, 1]])
>>> preds = torch.tensor([[0, 1], [0, 1]])
>>> hamming_distance(preds, target)
tensor(0.2500)

Return type Tensor

hinge [func]

torchmetrics.functional.hinge(preds, target, squared=False, multiclass_mode=None)
Computes the mean Hinge loss typically used for Support Vector Machines (SVMs).

In the binary case it is defined as:

Hinge loss = max(0, 1 − 𝑦 × 𝑦)

Where 𝑦 ∈ −1, 1 is the target, and 𝑦 ∈ R is the prediction.

In the multi-class case, when multiclass_mode=None (default), multiclass_mode=MulticlassMode.
CRAMMER_SINGER or multiclass_mode="crammer-singer", this metric will compute the multi-class hinge
loss defined by Crammer and Singer as:

Hinge loss = max

(︂
0, 1 − 𝑦𝑦 + max

𝑖 ̸=𝑦
(𝑦𝑖)

)︂
Where 𝑦 ∈ 0, ...,C is the target class (where C is the number of classes), and 𝑦 ∈ RC is the predicted output per
class.

In the multi-class case when multiclass_mode=MulticlassMode.ONE_VS_ALL or
multiclass_mode='one-vs-all', this metric will use a one-vs-all approach to compute the hinge
loss, giving a vector of C outputs where each entry pits that class against all remaining classes.

This metric can optionally output the mean of the squared hinge loss by setting squared=True

Only accepts inputs with preds shape of (N) (binary) or (N, C) (multi-class) and target shape of (N).

Parameters

• preds¶ (Tensor) – Predictions from model (as float outputs from decision function).

• target¶ (Tensor) – Ground truth labels.

• squared¶ (bool) – If True, this will compute the squared hinge loss. Otherwise, computes
the regular hinge loss (default).

• multiclass_mode¶ (Union[str, MulticlassMode, None]) – Which approach to use for
multi-class inputs (has no effect in the binary case). None (default), MulticlassMode.
CRAMMER_SINGER or "crammer-singer", uses the Crammer Singer multi-class hinge loss.
MulticlassMode.ONE_VS_ALL or "one-vs-all" computes the hinge loss in a one-vs-all
fashion.

Raises

• ValueError – If preds shape is not of size (N) or (N, C).

• ValueError – If target shape is not of size (N).

142 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Hinge_loss
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

• ValueError – If multiclass_mode is not: None, MulticlassMode.CRAMMER_SINGER,
"crammer-singer", MulticlassMode.ONE_VS_ALL or "one-vs-all".

Example (binary case):

>>> import torch
>>> from torchmetrics.functional import hinge
>>> target = torch.tensor([0, 1, 1])
>>> preds = torch.tensor([-2.2, 2.4, 0.1])
>>> hinge(preds, target)
tensor(0.3000)

Example (default / multiclass case):

>>> target = torch.tensor([0, 1, 2])
>>> preds = torch.tensor([[-1.0, 0.9, 0.2], [0.5, -1.1, 0.8], [2.2, -0.5, 0.3]])
>>> hinge(preds, target)
tensor(2.9000)

Example (multiclass example, one vs all mode):

>>> target = torch.tensor([0, 1, 2])
>>> preds = torch.tensor([[-1.0, 0.9, 0.2], [0.5, -1.1, 0.8], [2.2, -0.5, 0.3]])
>>> hinge(preds, target, multiclass_mode="one-vs-all")
tensor([2.2333, 1.5000, 1.2333])

Return type Tensor

iou [func]

torchmetrics.functional.iou(preds, target, ignore_index=None, absent_score=0.0, threshold=0.5,
num_classes=None, reduction='elementwise_mean')

Computes Jaccard index

𝐽(𝐴,𝐵) =
|𝐴 ∩𝐵|
|𝐴 ∪𝐵|

Where: 𝐴 and 𝐵 are both tensors of the same size, containing integer class values. They may be subject to
conversion from input data (see description below).

Note that it is different from box IoU.

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument to
convert into integer labels. This is the case for binary and multi-label probabilities.

If pred has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

Parameters

• preds¶ (Tensor) – tensor containing predictions from model (probabilities, or labels) with
shape [N, d1, d2, ...]

• target¶ (Tensor) – tensor containing ground truth labels with shape [N, d1, d2, ...]

• ignore_index¶ (Optional[int]) – optional int specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method.
Has no effect if given an int that is not in the range [0, num_classes-1], where num_classes is

2.6. Functional metrics 143

https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Jaccard_index
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

PyTorch-Metrics Documentation, Release 0.6.2

either given or derived from pred and target. By default, no index is ignored, and all classes
are used.

• absent_score¶ (float) – score to use for an individual class, if no instances of the class
index were present in pred AND no instances of the class index were present in target. For
example, if we have 3 classes, [0, 0] for pred, and [0, 2] for target, then class 1 would be
assigned the absent_score.

• threshold¶ (float) – Threshold value for binary or multi-label probabilities. default: 0.5

• num_classes¶ (Optional[int]) – Optionally specify the number of classes

• reduction¶ (str) – a method to reduce metric score over labels.

– 'elementwise_mean': takes the mean (default)

– 'sum': takes the sum

– 'none': no reduction will be applied

Returns Tensor containing single value if reduction is ‘elementwise_mean’, or number of classes if
reduction is ‘none’

Return type IoU score

Example

>>> from torchmetrics.functional import iou
>>> target = torch.randint(0, 2, (10, 25, 25))
>>> pred = torch.tensor(target)
>>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15]
>>> iou(pred, target)
tensor(0.9660)

kl_divergence [func]

torchmetrics.functional.kl_divergence(p, q, log_prob=False, reduction='mean')
Computes KL divergence

𝐷𝐾𝐿(𝑃 ||𝑄) =
∑︁
𝑥∈𝒳

𝑃 (𝑥) log
𝑃 (𝑥)

𝑄𝑥

Where 𝑃 and 𝑄 are probability distributions where 𝑃 usually represents a distribution over data and 𝑄 is of-
ten a prior or approximation of 𝑃 . It should be noted that the KL divergence is a non-symetrical metric i.e.
𝐷𝐾𝐿(𝑃 ||𝑄) ̸= 𝐷𝐾𝐿(𝑄||𝑃).

Parameters

• p¶ (Tensor) – data distribution with shape [N, d]

• q¶ (Tensor) – prior or approximate distribution with shape [N, d]

• log_prob¶ (bool) – bool indicating if input is log-probabilities or probabilities. If given
as probabilities, will normalize to make sure the distributes sum to 1

• reduction¶ (Optional[str]) – Determines how to reduce over the N/batch dimension:

– 'mean' [default]: Averages score across samples

– 'sum': Sum score across samples

144 Chapter 2. More reading

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

– 'none' or None: Returns score per sample

Example

>>> import torch
>>> p = torch.tensor([[0.36, 0.48, 0.16]])
>>> q = torch.tensor([[1/3, 1/3, 1/3]])
>>> kl_divergence(p, q)
tensor(0.0853)

Return type Tensor

matthews_corrcoef [func]

torchmetrics.functional.matthews_corrcoef(preds, target, num_classes, threshold=0.5)
Calculates Matthews correlation coefficient that measures the general correlation or quality of a classification.
In the binary case it is defined as:

𝑀𝐶𝐶 =
𝑇𝑃 * 𝑇𝑁 − 𝐹𝑃 * 𝐹𝑁√︀

(𝑇𝑃 + 𝐹𝑃) * (𝑇𝑃 + 𝐹𝑁) * (𝑇𝑁 + 𝐹𝑃) * (𝑇𝑁 + 𝐹𝑁)

where TP, TN, FP and FN are respectively the true postitives, true negatives, false positives and false negatives.
Also works in the case of multi-label or multi-class input.

Parameters

• preds¶ (Tensor) – (float or long tensor), Either a (N, ...) tensor with labels or (N, C,
...) where C is the number of classes, tensor with labels/probabilities

• target¶ (Tensor) – target (long tensor), tensor with shape (N, ...) with ground true
labels

• num_classes¶ (int) – Number of classes in the dataset.

• threshold¶ (float) – Threshold value for binary or multi-label probabilities. default: 0.5

Example

>>> from torchmetrics.functional import matthews_corrcoef
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> matthews_corrcoef(preds, target, num_classes=2)
tensor(0.5774)

Return type Tensor

2.6. Functional metrics 145

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

roc [func]

torchmetrics.functional.roc(preds, target, num_classes=None, pos_label=None, sample_weights=None)
Computes the Receiver Operating Characteristic (ROC). Works with both binary, multiclass and multilabel input.

Note: If either the positive class or negative class is completly missing in the target tensor, the roc values are
not well defined in this case and a tensor of zeros will be returned (either fpr or tpr depending on what class is
missing) together with an warning.

Parameters

• preds¶ (Tensor) – predictions from model (logits or probabilities)

• target¶ (Tensor) – ground truth values

• num_classes¶ (Optional[int]) – integer with number of classes for multi-label and mul-
ticlass problems. Should be set to None for binary problems

• pos_label¶ (Optional[int]) – integer determining the positive class. Default is None
which for binary problem is translate to 1. For multiclass problems this argument should not
be set as we iteratively change it in the range [0,num_classes-1]

• sample_weights¶ (Optional[Sequence]) – sample weights for each data point

Return type Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor],
List[Tensor]]]

Returns

3-element tuple containing

fpr: tensor with false positive rates. If multiclass or multilabel, this is a list of such tensors, one
for each class/label.

tpr: tensor with true positive rates. If multiclass or multilabel, this is a list of such tensors, one
for each class/label.

thresholds: tensor with thresholds used for computing false- and true postive rates If multiclass
or multilabel, this is a list of such tensors, one for each class/label.

Example (binary case):

>>> from torchmetrics.functional import roc
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 1, 1])
>>> fpr, tpr, thresholds = roc(pred, target, pos_label=1)
>>> fpr
tensor([0., 0., 0., 0., 1.])
>>> tpr
tensor([0.0000, 0.3333, 0.6667, 1.0000, 1.0000])
>>> thresholds
tensor([4, 3, 2, 1, 0])

Example (multiclass case):

>>> from torchmetrics.functional import roc
>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05],

(continues on next page)

146 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

(continued from previous page)

... [0.05, 0.75, 0.05, 0.05],

... [0.05, 0.05, 0.75, 0.05],

... [0.05, 0.05, 0.05, 0.75]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> fpr, tpr, thresholds = roc(pred, target, num_classes=4)
>>> fpr
[tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0.0000, 0.3333, 1.0000]),␣
→˓tensor([0.0000, 0.3333, 1.0000])]
>>> tpr
[tensor([0., 1., 1.]), tensor([0., 1., 1.]), tensor([0., 0., 1.]), tensor([0.,␣
→˓0., 1.])]
>>> thresholds
[tensor([1.7500, 0.7500, 0.0500]),
tensor([1.7500, 0.7500, 0.0500]),
tensor([1.7500, 0.7500, 0.0500]),
tensor([1.7500, 0.7500, 0.0500])]

Example (multilabel case):

>>> from torchmetrics.functional import roc
>>> pred = torch.tensor([[0.8191, 0.3680, 0.1138],
... [0.3584, 0.7576, 0.1183],
... [0.2286, 0.3468, 0.1338],
... [0.8603, 0.0745, 0.1837]])
>>> target = torch.tensor([[1, 1, 0], [0, 1, 0], [0, 0, 0], [0, 1, 1]])
>>> fpr, tpr, thresholds = roc(pred, target, num_classes=3, pos_label=1)
>>> fpr
[tensor([0.0000, 0.3333, 0.3333, 0.6667, 1.0000]),
tensor([0., 0., 0., 1., 1.]),
tensor([0.0000, 0.0000, 0.3333, 0.6667, 1.0000])]
>>> tpr
[tensor([0., 0., 1., 1., 1.]), tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000]),
→˓ tensor([0., 1., 1., 1., 1.])]
>>> thresholds
[tensor([1.8603, 0.8603, 0.8191, 0.3584, 0.2286]),
tensor([1.7576, 0.7576, 0.3680, 0.3468, 0.0745]),
tensor([1.1837, 0.1837, 0.1338, 0.1183, 0.1138])]

precision [func]

torchmetrics.functional.precision(preds, target, average='micro', mdmc_average=None,
ignore_index=None, num_classes=None, threshold=0.5, top_k=None,
multiclass=None)

Computes Precision

Precision =
TP

TP + FP
Where TP and FP represent the number of true positives and false positives respecitively. With the use of top_k
parameter, this metric can generalize to Precision@K.

The reduction method (how the precision scores are aggregated) is controlled by the average parameter, and
additionally by the mdmc_average parameter in the multi-dimensional multi-class case. Accepts all inputs listed
in Input types.

2.6. Functional metrics 147

https://en.wikipedia.org/wiki/Precision_and_recall

PyTorch-Metrics Documentation, Release 0.6.2

Parameters

• preds¶ (Tensor) – Predictions from model (probabilities, logits or labels)

• target¶ (Tensor) – Ground truth values

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tp + fn).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

Note: If 'none' and a given class doesn’t occur in the preds or target, the value for the
class will be nan.

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

148 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

PyTorch-Metrics Documentation, Release 0.6.2

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

Return type Tensor

Returns

The shape of the returned tensor depends on the average parameter

• If average in ['micro', 'macro', 'weighted', 'samples'], a one-element ten-
sor will be returned

• If average in ['none', None], the shape will be (C,), where C stands for the number
of classes

Raises

• ValueError – If average is not one of "micro", "macro", "weighted", "samples",
"none" or None.

• ValueError – If mdmc_average is not one of None, "samplewise", "global".

• ValueError – If average is set but num_classes is not provided.

• ValueError – If num_classes is set and ignore_index is not in the range [0,
num_classes).

Example

>>> from torchmetrics.functional import precision
>>> preds = torch.tensor([2, 0, 2, 1])
>>> target = torch.tensor([1, 1, 2, 0])
>>> precision(preds, target, average='macro', num_classes=3)
tensor(0.1667)
>>> precision(preds, target, average='micro')
tensor(0.2500)

precision_recall [func]

torchmetrics.functional.precision_recall(preds, target, average='micro', mdmc_average=None,
ignore_index=None, num_classes=None, threshold=0.5,
top_k=None, multiclass=None)

Computes Precision

Precision =
TP

TP + FP

Recall =
TP

TP + FN
Where TPtext{FN}` and FP represent the number of true positives, false negatives and false positives re-
specitively. With the use of top_k parameter, this metric can generalize to Recall@K and Precision@K.

The reduction method (how the recall scores are aggregated) is controlled by the average parameter, and addi-
tionally by the mdmc_average parameter in the multi-dimensional multi-class case. Accepts all inputs listed in
Input types.

Parameters

2.6. Functional metrics 149

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/Precision_and_recall

PyTorch-Metrics Documentation, Release 0.6.2

• preds¶ (Tensor) – Predictions from model (probabilities, logits or labels)

• target¶ (Tensor) – Ground truth values

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tp + fn).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

Note: If 'none' and a given class doesn’t occur in the preds or target, the value for the
class will be nan.

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

150 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

PyTorch-Metrics Documentation, Release 0.6.2

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

Returns

precision and recall. Their shape depends on the average parameter

• If average in ['micro', 'macro', 'weighted', 'samples'], they are a single el-
ement tensor

• If average in ['none', None], they are a tensor of shape (C,), where C stands for the
number of classes

Return type The function returns a tuple with two elements

Raises

• ValueError – If average is not one of "micro", "macro", "weighted", "samples",
"none" or None.

• ValueError – If mdmc_average is not one of None, "samplewise", "global".

• ValueError – If average is set but num_classes is not provided.

• ValueError – If num_classes is set and ignore_index is not in the range [0,
num_classes).

Example

>>> from torchmetrics.functional import precision_recall
>>> preds = torch.tensor([2, 0, 2, 1])
>>> target = torch.tensor([1, 1, 2, 0])
>>> precision_recall(preds, target, average='macro', num_classes=3)
(tensor(0.1667), tensor(0.3333))
>>> precision_recall(preds, target, average='micro')
(tensor(0.2500), tensor(0.2500))

precision_recall_curve [func]

torchmetrics.functional.precision_recall_curve(preds, target, num_classes=None, pos_label=None,
sample_weights=None)

Computes precision-recall pairs for different thresholds.

Parameters

• preds¶ (Tensor) – predictions from model (probabilities)

• target¶ (Tensor) – ground truth labels

• num_classes¶ (Optional[int]) – integer with number of classes for multi-label and mul-
ticlass problems. Should be set to None for binary problems

• pos_label¶ (Optional[int]) – integer determining the positive class. Default is None
which for binary problem is translate to 1. For multiclass problems this argument should not
be set as we iteratively change it in the range [0,num_classes-1]

• sample_weights¶ (Optional[Sequence]) – sample weights for each data point

2.6. Functional metrics 151

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence

PyTorch-Metrics Documentation, Release 0.6.2

Return type Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor],
List[Tensor]]]

Returns

3-element tuple containing

precision: tensor where element i is the precision of predictions with score >= thresholds[i] and
the last element is 1. If multiclass, this is a list of such tensors, one for each class.

recall: tensor where element i is the recall of predictions with score >= thresholds[i] and the last
element is 0. If multiclass, this is a list of such tensors, one for each class.

thresholds: Thresholds used for computing precision/recall scores

Raises

• ValueError – If preds and target don’t have the same number of dimensions, or one
additional dimension for preds.

• ValueError – If the number of classes deduced from preds is not the same as the
num_classes provided.

Example (binary case):

>>> from torchmetrics.functional import precision_recall_curve
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 1, 0])
>>> precision, recall, thresholds = precision_recall_curve(pred, target, pos_
→˓label=1)
>>> precision
tensor([0.6667, 0.5000, 0.0000, 1.0000])
>>> recall
tensor([1.0000, 0.5000, 0.0000, 0.0000])
>>> thresholds
tensor([1, 2, 3])

Example (multiclass case):

>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> precision, recall, thresholds = precision_recall_curve(pred, target, num_
→˓classes=5)
>>> precision
[tensor([1., 1.]), tensor([1., 1.]), tensor([0.2500, 0.0000, 1.0000]),
tensor([0.2500, 0.0000, 1.0000]), tensor([0., 1.])]
>>> recall
[tensor([1., 0.]), tensor([1., 0.]), tensor([1., 0., 0.]), tensor([1., 0., 0.]),
→˓ tensor([nan, 0.])]
>>> thresholds
[tensor([0.7500]), tensor([0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500,␣
→˓0.7500]), tensor([0.0500])]

152 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

recall [func]

torchmetrics.functional.recall(preds, target, average='micro', mdmc_average=None, ignore_index=None,
num_classes=None, threshold=0.5, top_k=None, multiclass=None)

Computes Recall

Recall =
TP

TP + FN

Where TP and FN represent the number of true positives and false negatives respecitively. With the use of top_k
parameter, this metric can generalize to Recall@K.

The reduction method (how the recall scores are aggregated) is controlled by the average parameter, and addi-
tionally by the mdmc_average parameter in the multi-dimensional multi-class case. Accepts all inputs listed in
Input types.

Parameters

• preds¶ (Tensor) – Predictions from model (probabilities, logits or labels)

• target¶ (Tensor) – Ground truth values

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tp + fn).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

Note: If 'none' and a given class doesn’t occur in the preds or target, the value for the
class will be nan.

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

2.6. Functional metrics 153

https://en.wikipedia.org/wiki/Precision_and_recall
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

Return type Tensor

Returns

The shape of the returned tensor depends on the average parameter

• If average in ['micro', 'macro', 'weighted', 'samples'], a one-element ten-
sor will be returned

• If average in ['none', None], the shape will be (C,), where C stands for the number
of classes

Raises

• ValueError – If average is not one of "micro", "macro", "weighted", "samples",
"none" or None.

• ValueError – If mdmc_average is not one of None, "samplewise", "global".

• ValueError – If average is set but num_classes is not provided.

• ValueError – If num_classes is set and ignore_index is not in the range [0,
num_classes).

Example

>>> from torchmetrics.functional import recall
>>> preds = torch.tensor([2, 0, 2, 1])
>>> target = torch.tensor([1, 1, 2, 0])
>>> recall(preds, target, average='macro', num_classes=3)
tensor(0.3333)
>>> recall(preds, target, average='micro')
tensor(0.2500)

154 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

select_topk [func]

torchmetrics.utilities.data.select_topk(prob_tensor, topk=1, dim=1)
Convert a probability tensor to binary by selecting top-k highest entries.

Parameters

• prob_tensor¶ (Tensor) – dense tensor of shape [..., C, ...], where C is in the posi-
tion defined by the dim argument

• topk¶ (int) – number of highest entries to turn into 1s

• dim¶ (int) – dimension on which to compare entries

Return type Tensor

Returns A binary tensor of the same shape as the input tensor of type torch.int32

Example

>>> x = torch.tensor([[1.1, 2.0, 3.0], [2.0, 1.0, 0.5]])
>>> select_topk(x, topk=2)
tensor([[0, 1, 1],

[1, 1, 0]], dtype=torch.int32)

specificity [func]

torchmetrics.functional.specificity(preds, target, average='micro', mdmc_average=None,
ignore_index=None, num_classes=None, threshold=0.5,
top_k=None, multiclass=None)

Computes Specificity

Specificity =
TN

TN + FP

Where TN and FP represent the number of true negatives and false positives respecitively. With the use of top_k
parameter, this metric can generalize to Specificity@K.

The reduction method (how the specificity scores are aggregated) is controlled by the average parameter, and
additionally by the mdmc_average parameter in the multi-dimensional multi-class case. Accepts all inputs listed
in Input types.

Parameters

• preds¶ (Tensor) – Predictions from model (probabilities, or labels)

• target¶ (Tensor) – Ground truth values

• average¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Calculate the metric globally, across all samples and classes.

– 'macro': Calculate the metric for each class separately, and average the metrics across
classes (with equal weights for each class).

– 'weighted': Calculate the metric for each class separately, and average the metrics across
classes, weighting each class by its support (tn + fp).

– 'none' or None: Calculate the metric for each class separately, and return the metric for
every class.

2.6. Functional metrics 155

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

– 'samples': Calculate the metric for each sample, and average the metrics across samples
(with equal weights for each sample).

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_average.

Note: If 'none' and a given class doesn’t occur in the preds or target, the value for the
class will be nan.

• mdmc_average¶ (Optional[str]) – Defines how averaging is done for multi-dimensional
multi-class inputs (on top of the average parameter). Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

– 'samplewise': In this case, the statistics are computed separately for each sample on
the N axis, and then averaged over samples. The computation for each sample is done
by treating the flattened extra axes ... (see Input types) as the N dimension within the
sample, and computing the metric for the sample based on that.

– 'global': In this case the N and ... dimensions of the inputs (see Input types) are flat-
tened into a new N_X sample axis, i.e. the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

• ignore_index¶ (Optional[int]) – Integer specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless of reduction method. If
an index is ignored, and average=None or 'none', the score for the ignored class will be
returned as nan.

• num_classes¶ (Optional[int]) – Number of classes. Necessary for 'macro',
'weighted' and None average methods.

• threshold¶ (float) – Threshold probability value for transforming probability predictions
to binary (0,1) predictions, in the case of binary or multi-label inputs

• top_k¶ (Optional[int]) – Number of highest probability entries for each sample to convert
to 1s - relevant only for inputs with probability predictions. If this parameter is set for multi-
label inputs, it will take precedence over threshold. For (multi-dim) multi-class inputs,
this parameter defaults to 1.

Should be left unset (None) for inputs with label predictions.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

Return type Tensor

Returns

The shape of the returned tensor depends on the average parameter

• If average in ['micro', 'macro', 'weighted', 'samples'], a one-element ten-
sor will be returned

• If average in ['none', None], the shape will be (C,), where C stands for the number
of classes

Raises

156 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

• ValueError – If average is not one of "micro", "macro", "weighted", "samples",
"none" or None.

• ValueError – If mdmc_average is not one of None, "samplewise", "global".

• ValueError – If average is set but num_classes is not provided.

• ValueError – If num_classes is set and ignore_index is not in the range [0,
num_classes).

Example

>>> from torchmetrics.functional import specificity
>>> preds = torch.tensor([2, 0, 2, 1])
>>> target = torch.tensor([1, 1, 2, 0])
>>> specificity(preds, target, average='macro', num_classes=3)
tensor(0.6111)
>>> specificity(preds, target, average='micro')
tensor(0.6250)

stat_scores [func]

torchmetrics.functional.stat_scores(preds, target, reduce='micro', mdmc_reduce=None,
num_classes=None, top_k=None, threshold=0.5, multiclass=None,
ignore_index=None)

Computes the number of true positives, false positives, true negatives, false negatives. Related to Type I and
Type II errors and the confusion matrix.

The reduction method (how the statistics are aggregated) is controlled by the reduce parameter, and additionally
by the mdmc_reduce parameter in the multi-dimensional multi-class case. Accepts all inputs listed in Input types.

Parameters

• preds¶ (Tensor) – Predictions from model (probabilities, logits or labels)

• target¶ (Tensor) – Ground truth values

• threshold¶ (float) – Threshold for transforming probability or logit predictions to binary
(0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds
to input being probabilities.

• top_k¶ (Optional[int]) – Number of highest probability or logit score predictions consid-
ered to find the correct label, relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

• reduce¶ (str) – Defines the reduction that is applied. Should be one of the following:

– 'micro' [default]: Counts the statistics by summing over all [sample, class] combinations
(globally). Each statistic is represented by a single integer.

– 'macro': Counts the statistics for each class separately (over all samples). Each statistic
is represented by a (C,) tensor. Requires num_classes to be set.

– 'samples': Counts the statistics for each sample separately (over all classes). Each statis-
tic is represented by a (N,) 1d tensor.

2.6. Functional metrics 157

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://en.wikipedia.org/wiki/Confusion_matrix#Table_of_confusion
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

Note: What is considered a sample in the multi-dimensional multi-class case depends on
the value of mdmc_reduce.

• num_classes¶ (Optional[int]) – Number of classes. Necessary for (multi-dimensional)
multi-class or multi-label data.

• ignore_index¶ (Optional[int]) – Specify a class (label) to ignore. If given, this class
index does not contribute to the returned score, regardless of reduction method. If an index is
ignored, and reduce='macro', the class statistics for the ignored class will all be returned
as -1.

• mdmc_reduce¶ (Optional[str]) – Defines how the multi-dimensional multi-class inputs
are handeled. Should be one of the following:

– None [default]: Should be left unchanged if your data is not multi-dimensional multi-class
(see Input types for the definition of input types).

– 'samplewise': In this case, the statistics are computed separately for each sample on the
N axis, and then the outputs are concatenated together. In each sample the extra axes ...
are flattened to become the sub-sample axis, and statistics for each sample are computed
by treating the sub-sample axis as the N axis for that sample.

– 'global': In this case the N and ... dimensions of the inputs are flattened into a new
N_X sample axis, i.e. the inputs are treated as if they were (N_X, C). From here on the
reduce parameter applies as usual.

• multiclass¶ (Optional[bool]) – Used only in certain special cases, where you want to
treat inputs as a different type than what they appear to be. See the parameter’s documentation
section for a more detailed explanation and examples.

Return type Tensor

Returns

The metric returns a tensor of shape (..., 5), where the last dimension corresponds to [tp,
fp, tn, fn, sup] (sup stands for support and equals tp + fn). The shape depends on the
reduce and mdmc_reduce (in case of multi-dimensional multi-class data) parameters:

• If the data is not multi-dimensional multi-class, then

– If reduce='micro', the shape will be (5,)

– If reduce='macro', the shape will be (C, 5), where C stands for the number of classes

– If reduce='samples', the shape will be (N, 5), where N stands for the number of sam-
ples

• If the data is multi-dimensional multi-class and mdmc_reduce='global', then

– If reduce='micro', the shape will be (5,)

– If reduce='macro', the shape will be (C, 5)

– If reduce='samples', the shape will be (N*X, 5), where X stands for the product of
sizes of all “extra” dimensions of the data (i.e. all dimensions except for C and N)

• If the data is multi-dimensional multi-class and mdmc_reduce='samplewise', then

– If reduce='micro', the shape will be (N, 5)

– If reduce='macro', the shape will be (N, C, 5)

– If reduce='samples', the shape will be (N, X, 5)

158 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

Raises

• ValueError – If reduce is none of "micro", "macro" or "samples".

• ValueError – If mdmc_reduce is none of None, "samplewise", "global".

• ValueError – If reduce is set to "macro" and num_classes is not provided.

• ValueError – If num_classes is set and ignore_index is not in the range [0,
num_classes).

• ValueError – If ignore_index is used with binary data.

• ValueError – If inputs are multi-dimensional multi-class and mdmc_reduce is not
provided.

Example

>>> from torchmetrics.functional import stat_scores
>>> preds = torch.tensor([1, 0, 2, 1])
>>> target = torch.tensor([1, 1, 2, 0])
>>> stat_scores(preds, target, reduce='macro', num_classes=3)
tensor([[0, 1, 2, 1, 1],

[1, 1, 1, 1, 2],
[1, 0, 3, 0, 1]])

>>> stat_scores(preds, target, reduce='micro')
tensor([2, 2, 6, 2, 4])

to_categorical [func]

torchmetrics.utilities.data.to_categorical(x, argmax_dim=1)
Converts a tensor of probabilities to a dense label tensor.

Parameters

• x¶ (Tensor) – probabilities to get the categorical label [N, d1, d2, . . .]

• argmax_dim¶ (int) – dimension to apply

Return type Tensor

Returns A tensor with categorical labels [N, d2, . . .]

Example

>>> x = torch.tensor([[0.2, 0.5], [0.9, 0.1]])
>>> to_categorical(x)
tensor([1, 0])

2.6. Functional metrics 159

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

to_onehot [func]

torchmetrics.utilities.data.to_onehot(label_tensor, num_classes=None)
Converts a dense label tensor to one-hot format.

Parameters

• label_tensor¶ (Tensor) – dense label tensor, with shape [N, d1, d2, . . .]

• num_classes¶ (Optional[int]) – number of classes C

Return type Tensor

Returns A sparse label tensor with shape [N, C, d1, d2, . . .]

Example

>>> x = torch.tensor([1, 2, 3])
>>> to_onehot(x)
tensor([[0, 1, 0, 0],

[0, 0, 1, 0],
[0, 0, 0, 1]])

2.6.3 Image Metrics

image_gradients [func]

torchmetrics.functional.image_gradients(img)
Computes Gradient Computation of Image of a given image using finite difference.

Parameters img¶ (Tensor) – An (N, C, H, W) input tensor where C is the number of image
channels

Return type Tuple[Tensor, Tensor]

Returns Tuple of (dy, dx) with each gradient of shape [N, C, H, W]

Raises

• TypeError – If img is not of the type <torch.Tensor>.

• RuntimeError – If img is not a 4D tensor.

Example

>>> from torchmetrics.functional import image_gradients
>>> image = torch.arange(0, 1*1*5*5, dtype=torch.float32)
>>> image = torch.reshape(image, (1, 1, 5, 5))
>>> dy, dx = image_gradients(image)
>>> dy[0, 0, :, :]
tensor([[5., 5., 5., 5., 5.],

[5., 5., 5., 5., 5.],
[5., 5., 5., 5., 5.],
[5., 5., 5., 5., 5.],
[0., 0., 0., 0., 0.]])

160 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Image_gradient
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Tuple
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#RuntimeError

PyTorch-Metrics Documentation, Release 0.6.2

Note: The implementation follows the 1-step finite difference method as followed by the TF implementation.
The values are organized such that the gradient of [I(x+1, y)-[I(x, y)]] are at the (x, y) location

psnr [func]

torchmetrics.functional.psnr(preds, target, data_range=None, base=10.0, reduction='elementwise_mean',
dim=None)

Computes the peak signal-to-noise ratio.

Parameters

• preds¶ (Tensor) – estimated signal

• target¶ (Tensor) – groun truth signal

• data_range¶ (Optional[float]) – the range of the data. If None, it is determined from
the data (max - min). data_range must be given when dim is not None.

• base¶ (float) – a base of a logarithm to use (default: 10)

• reduction¶ (str) – a method to reduce metric score over labels.

– 'elementwise_mean': takes the mean (default)

– 'sum': takes the sum

– 'none': no reduction will be applied

• dim¶ (Union[int, Tuple[int, . . .], None]) – Dimensions to reduce PSNR scores over pro-
vided as either an integer or a list of integers. Default is None meaning scores will be reduced
across all dimensions.

Return type Tensor

Returns Tensor with PSNR score

Raises ValueError – If dim is not None and data_range is not provided.

Example

>>> from torchmetrics.functional import psnr
>>> pred = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
>>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
>>> psnr(pred, target)
tensor(2.5527)

Note: Half precision is only support on GPU for this metric

2.6. Functional metrics 161

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

ssim [func]

torchmetrics.functional.ssim(preds, target, kernel_size=(11, 11), sigma=(1.5, 1.5),
reduction='elementwise_mean', data_range=None, k1=0.01, k2=0.03)

Computes Structual Similarity Index Measure.

Parameters

• preds¶ (Tensor) – estimated image

• target¶ (Tensor) – ground truth image

• kernel_size¶ (Sequence[int]) – size of the gaussian kernel (default: (11, 11))

• sigma¶ (Sequence[float]) – Standard deviation of the gaussian kernel (default: (1.5, 1.5))

• reduction¶ (str) – a method to reduce metric score over labels.

– 'elementwise_mean': takes the mean (default)

– 'sum': takes the sum

– 'none': no reduction will be applied

• data_range¶ (Optional[float]) – Range of the image. If None, it is determined from
the image (max - min)

• k1¶ (float) – Parameter of SSIM. Default: 0.01

• k2¶ (float) – Parameter of SSIM. Default: 0.03

Return type Tensor

Returns Tensor with SSIM score

Raises

• TypeError – If preds and target don’t have the same data type.

• ValueError – If preds and target don’t have BxCxHxW shape.

• ValueError – If the length of kernel_size or sigma is not 2.

• ValueError – If one of the elements of kernel_size is not an odd positive number.

• ValueError – If one of the elements of sigma is not a positive number.

Example

>>> from torchmetrics.functional import ssim
>>> preds = torch.rand([16, 1, 16, 16])
>>> target = preds * 0.75
>>> ssim(preds, target)
tensor(0.9219)

162 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

2.6.4 Regression Metrics

cosine_similarity [func]

torchmetrics.functional.cosine_similarity(preds, target, reduction='sum')
Computes the Cosine Similarity between targets and predictions:

𝑐𝑜𝑠𝑠𝑖𝑚(𝑥, 𝑦) =
𝑥 · 𝑦

||𝑥|| · ||𝑦||
=

∑︀𝑛
𝑖=1 𝑥𝑖𝑦𝑖√︀∑︀𝑛

𝑖=1 𝑥
2
𝑖

√︀∑︀𝑛
𝑖=1 𝑦

2
𝑖

where 𝑦 is a tensor of target values, and 𝑥 is a tensor of predictions.

Parameters

• preds¶ (Tensor) – Predicted tensor with shape (N,d)

• target¶ (Tensor) – Ground truth tensor with shape (N,d)

• reduction¶ (str) – The method of reducing along the batch dimension using sum, mean
or taking the individual scores

Example

>>> from torchmetrics.functional.regression import cosine_similarity
>>> target = torch.tensor([[1, 2, 3, 4],
... [1, 2, 3, 4]])
>>> preds = torch.tensor([[1, 2, 3, 4],
... [-1, -2, -3, -4]])
>>> cosine_similarity(preds, target, 'none')
tensor([1.0000, -1.0000])

Return type Tensor

explained_variance [func]

torchmetrics.functional.explained_variance(preds, target, multioutput='uniform_average')
Computes explained variance.

Parameters

• preds¶ (Tensor) – estimated labels

• target¶ (Tensor) – ground truth labels

• multioutput¶ (str) – Defines aggregation in the case of multiple output scores. Can be
one of the following strings (default is ‘uniform_average’.):

– ’raw_values’ returns full set of scores

– ’uniform_average’ scores are uniformly averaged

– ’variance_weighted’ scores are weighted by their individual variances

2.6. Functional metrics 163

https://en.wikipedia.org/wiki/Cosine_similarity
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics.functional import explained_variance
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> explained_variance(preds, target)
tensor(0.9572)

>>> target = torch.tensor([[0.5, 1], [-1, 1], [7, -6]])
>>> preds = torch.tensor([[0, 2], [-1, 2], [8, -5]])
>>> explained_variance(preds, target, multioutput='raw_values')
tensor([0.9677, 1.0000])

Return type Union[Tensor, Sequence[Tensor]]

mean_absolute_error [func]

torchmetrics.functional.mean_absolute_error(preds, target)
Computes mean absolute error.

Parameters

• preds¶ (Tensor) – estimated labels

• target¶ (Tensor) – ground truth labels

Return type Tensor

Returns Tensor with MAE

Example

>>> from torchmetrics.functional import mean_absolute_error
>>> x = torch.tensor([0., 1, 2, 3])
>>> y = torch.tensor([0., 1, 2, 2])
>>> mean_absolute_error(x, y)
tensor(0.2500)

mean_absolute_percentage_error [func]

torchmetrics.functional.mean_absolute_percentage_error(preds, target)
Computes mean absolute percentage error.

Parameters

• preds¶ (Tensor) – estimated labels

• target¶ (Tensor) – ground truth labels

Return type Tensor

Returns Tensor with MAPE

Note: The epsilon value is taken from scikit-learn’s implementation of MAPE.

164 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Union
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Sequence
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://github.com/scikit-learn/scikit-learn/blob/15a949460/sklearn/metrics/_regression.py#L197

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics.functional import mean_absolute_percentage_error
>>> target = torch.tensor([1, 10, 1e6])
>>> preds = torch.tensor([0.9, 15, 1.2e6])
>>> mean_absolute_percentage_error(preds, target)
tensor(0.2667)

mean_squared_error [func]

torchmetrics.functional.mean_squared_error(preds, target, squared=True)
Computes mean squared error.

Parameters

• preds¶ (Tensor) – estimated labels

• target¶ (Tensor) – ground truth labels

• squared¶ (bool) – returns RMSE value if set to False

Return type Tensor

Returns Tensor with MSE

Example

>>> from torchmetrics.functional import mean_squared_error
>>> x = torch.tensor([0., 1, 2, 3])
>>> y = torch.tensor([0., 1, 2, 2])
>>> mean_squared_error(x, y)
tensor(0.2500)

mean_squared_log_error [func]

torchmetrics.functional.mean_squared_log_error(preds, target)
Computes mean squared log error.

Parameters

• preds¶ (Tensor) – estimated labels

• target¶ (Tensor) – ground truth labels

Return type Tensor

Returns Tensor with RMSLE

2.6. Functional metrics 165

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics.functional import mean_squared_log_error
>>> x = torch.tensor([0., 1, 2, 3])
>>> y = torch.tensor([0., 1, 2, 2])
>>> mean_squared_log_error(x, y)
tensor(0.0207)

Note: Half precision is only support on GPU for this metric

pearson_corrcoef [func]

torchmetrics.functional.pearson_corrcoef(preds, target)
Computes pearson correlation coefficient.

Parameters

• preds¶ (Tensor) – estimated scores

• target¶ (Tensor) – ground truth scores

Example

>>> from torchmetrics.functional import pearson_corrcoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> pearson_corrcoef(preds, target)
tensor(0.9849)

Return type Tensor

r2_score [func]

torchmetrics.functional.r2_score(preds, target, adjusted=0, multioutput='uniform_average')
Computes r2 score also known as R2 Score_Coefficient Determination:

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

where 𝑆𝑆𝑟𝑒𝑠 =
∑︀

𝑖(𝑦𝑖 − 𝑓(𝑥𝑖))
2 is the sum of residual squares, and 𝑆𝑆𝑡𝑜𝑡 =

∑︀
𝑖(𝑦𝑖 − 𝑦)2 is total sum of

squares. Can also calculate adjusted r2 score given by

𝑅2
𝑎𝑑𝑗 = 1 − (1 −𝑅2)(𝑛− 1)

𝑛− 𝑘 − 1

where the parameter 𝑘 (the number of independent regressors) should be provided as the adjusted argument.

Parameters

• preds¶ (Tensor) – estimated labels

• target¶ (Tensor) – ground truth labels

166 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

• adjusted¶ (int) – number of independent regressors for calculating adjusted r2 score.
Default 0 (standard r2 score).

• multioutput¶ (str) – Defines aggregation in the case of multiple output scores. Can be
one of the following strings (default is 'uniform_average'.):

– 'raw_values' returns full set of scores

– 'uniform_average' scores are uniformly averaged

– 'variance_weighted' scores are weighted by their individual variances

Raises

• ValueError – If both preds and targets are not 1D or 2D tensors.

• ValueError – If len(preds) is less than 2 since at least 2 sampels are needed to calculate
r2 score.

• ValueError – If multioutput is not one of raw_values, uniform_average or
variance_weighted.

• ValueError – If adjusted is not an integer greater than 0.

Example

>>> from torchmetrics.functional import r2_score
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> r2_score(preds, target)
tensor(0.9486)

>>> target = torch.tensor([[0.5, 1], [-1, 1], [7, -6]])
>>> preds = torch.tensor([[0, 2], [-1, 2], [8, -5]])
>>> r2_score(preds, target, multioutput='raw_values')
tensor([0.9654, 0.9082])

Return type Tensor

spearman_corrcoef [func]

torchmetrics.functional.spearman_corrcoef(preds, target)

Computes spearmans rank correlation coefficient:

where 𝑟𝑔𝑥 and 𝑟𝑔𝑦 are the rank associated to the variables x and y. Spearmans correlations coefficient corre-
sponds to the standard pearsons correlation coefficient calculated on the rank variables.

Parameters

• preds¶ (Tensor) – estimated scores

• target¶ (Tensor) – ground truth scores

2.6. Functional metrics 167

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics.functional import spearman_corrcoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> spearman_corrcoef(preds, target)
tensor(1.0000)

Return type Tensor

symmetric_mean_absolute_percentage_error [func]

torchmetrics.functional.symmetric_mean_absolute_percentage_error(preds, target)
Computes symmetric mean absolute percentage error (SMAPE):

SMAPE =
2

𝑛

𝑛∑︁
1

𝑚𝑎𝑥(|𝑦𝑖 − 𝑦𝑖|
|𝑦𝑖| + |𝑦𝑖|, 𝜖)

Where 𝑦 is a tensor of target values, and 𝑦 is a tensor of predictions.

Parameters

• preds¶ (Tensor) – estimated labels

• target¶ (Tensor) – ground truth labels

Return type Tensor

Returns Tensor with SMAPE.

Example

>>> from torchmetrics.functional import symmetric_mean_absolute_percentage_error
>>> target = torch.tensor([1, 10, 1e6])
>>> preds = torch.tensor([0.9, 15, 1.2e6])
>>> symmetric_mean_absolute_percentage_error(preds, target)
tensor(0.2290)

tweedie_deviance_score [func]

torchmetrics.functional.tweedie_deviance_score(preds, targets, power=0.0)
Computes the Tweedie Deviance Score between targets and predictions:

𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒(𝑦, 𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝑦 − 𝑦)2, for 𝑝𝑜𝑤𝑒𝑟 = 0

2 * (𝑦 * 𝑙𝑜𝑔(𝑦
𝑦) + 𝑦 − 𝑦), for 𝑝𝑜𝑤𝑒𝑟 = 1

2 * (𝑙𝑜𝑔(𝑦
𝑦) + 𝑦

𝑦 − 1), for 𝑝𝑜𝑤𝑒𝑟 = 2

2 * ((𝑚𝑎𝑥(𝑦,0))2

(1−𝑝𝑜𝑤𝑒𝑟)(2−𝑝𝑜𝑤𝑒𝑟) −
𝑦(𝑦)1−𝑝𝑜𝑤𝑒𝑟

1−𝑝𝑜𝑤𝑒𝑟 + (𝑦)2−𝑝𝑜𝑤𝑒𝑟

2−𝑝𝑜𝑤𝑒𝑟), otherwise

where 𝑦 is a tensor of targets values, and 𝑦 is a tensor of predictions.

Parameters

• preds¶ (Tensor) – Predicted tensor with shape (N,...)

168 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Tweedie_distribution#The_Tweedie_deviance
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

• targets¶ (Tensor) – Ground truth tensor with shape (N,...)

• power¶ (float) –

– power < 0 : Extreme stable distribution. (Requires: preds > 0.)

– power = 0 : Normal distribution. (Requires: targets and preds can be any real numbers.)

– power = 1 : Poisson distribution. (Requires: targets >= 0 and y_pred > 0.)

– 1 < p < 2 : Compound Poisson distribution. (Requires: targets >= 0 and preds > 0.)

– power = 2 : Gamma distribution. (Requires: targets > 0 and preds > 0.)

– power = 3 : Inverse Gaussian distribution. (Requires: targets > 0 and preds > 0.)

– otherwise : Positive stable distribution. (Requires: targets > 0 and preds > 0.)

Example

>>> from torchmetrics.functional import tweedie_deviance_score
>>> targets = torch.tensor([1.0, 2.0, 3.0, 4.0])
>>> preds = torch.tensor([4.0, 3.0, 2.0, 1.0])
>>> tweedie_deviance_score(preds, targets, power=2)
tensor(1.2083)

Return type Tensor

2.6.5 Pairwise Metrics

pairwise_cosine_similarity [func]

torchmetrics.functional.pairwise_cosine_similarity(x, y=None, reduction=None,
zero_diagonal=None)

Calculates pairwise cosine similarity:

𝑠𝑐𝑜𝑠(𝑥, 𝑦) =
< 𝑥, 𝑦 >

||𝑥|| · ||𝑦||
=

∑︀𝐷
𝑑=1 𝑥𝑑 · 𝑦𝑑√︁∑︀𝐷

𝑑=1 𝑥
2
𝑖 ·

√︁∑︀𝐷
𝑑=1 𝑥

2
𝑖

If both x and y are passed in, the calculation will be performed pairwise between the rows of x and y. If only x
is passed in, the calculation will be performed between the rows of x.

Parameters

• x¶ (Tensor) – Tensor with shape [N, d]

• y¶ (Optional[Tensor]) – Tensor with shape [M, d], optional

• reduction¶ (Optional[str]) – reduction to apply along the last dimension. Choose be-
tween ‘mean’, ‘sum’ (applied along column dimension) or ‘none’, None for no reduction

• zero_diagonal¶ (Optional[bool]) – if the diagonal of the distance matrix should be set
to 0. If only x is given this defaults to True else if y is also given it defaults to False

Return type Tensor

Returns A [N,N] matrix of distances if only x is given, else a [N,M] matrix

2.6. Functional metrics 169

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> import torch
>>> from torchmetrics.functional import pairwise_cosine_similarity
>>> x = torch.tensor([[2, 3], [3, 5], [5, 8]], dtype=torch.float32)
>>> y = torch.tensor([[1, 0], [2, 1]], dtype=torch.float32)
>>> pairwise_cosine_similarity(x, y)
tensor([[0.5547, 0.8682],

[0.5145, 0.8437],
[0.5300, 0.8533]])

>>> pairwise_cosine_similarity(x)
tensor([[0.0000, 0.9989, 0.9996],

[0.9989, 0.0000, 0.9998],
[0.9996, 0.9998, 0.0000]])

pairwise_euclidean_distance [func]

torchmetrics.functional.pairwise_euclidean_distance(x, y=None, reduction=None,
zero_diagonal=None)

Calculates pairwise euclidean distances:

𝑑𝑒𝑢𝑐(𝑥, 𝑦) = ||𝑥− 𝑦||2 =

⎯⎸⎸⎷ 𝐷∑︁
𝑑=1

(𝑥𝑑 − 𝑦𝑑)2

If both x and y are passed in, the calculation will be performed pairwise between the rows of x and y. If only x
is passed in, the calculation will be performed between the rows of x.

Parameters

• x¶ (Tensor) – Tensor with shape [N, d]

• y¶ (Optional[Tensor]) – Tensor with shape [M, d], optional

• reduction¶ (Optional[str]) – reduction to apply along the last dimension. Choose be-
tween ‘mean’, ‘sum’ (applied along column dimension) or ‘none’, None for no reduction

• zero_diagonal¶ (Optional[bool]) – if the diagonal of the distance matrix should be set
to 0. If only x is given this defaults to True else if y is also given it defaults to False

Return type Tensor

Returns A [N,N] matrix of distances if only x is given, else a [N,M] matrix

Example

>>> import torch
>>> from torchmetrics.functional import pairwise_euclidean_distance
>>> x = torch.tensor([[2, 3], [3, 5], [5, 8]], dtype=torch.float32)
>>> y = torch.tensor([[1, 0], [2, 1]], dtype=torch.float32)
>>> pairwise_euclidean_distance(x, y)
tensor([[3.1623, 2.0000],

[5.3852, 4.1231],
[8.9443, 7.6158]])

>>> pairwise_euclidean_distance(x)
(continues on next page)

170 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

(continued from previous page)

tensor([[0.0000, 2.2361, 5.8310],
[2.2361, 0.0000, 3.6056],
[5.8310, 3.6056, 0.0000]])

pairwise_linear_similarity [func]

torchmetrics.functional.pairwise_linear_similarity(x, y=None, reduction=None,
zero_diagonal=None)

Calculates pairwise linear similarity:

𝑠𝑙𝑖𝑛(𝑥, 𝑦) =< 𝑥, 𝑦 >=

𝐷∑︁
𝑑=1

𝑥𝑑 · 𝑦𝑑

If both x and y are passed in, the calculation will be performed pairwise between the rows of x and y. If only x
is passed in, the calculation will be performed between the rows of x.

Parameters

• x¶ (Tensor) – Tensor with shape [N, d]

• y¶ (Optional[Tensor]) – Tensor with shape [M, d], optional

• reduction¶ (Optional[str]) – reduction to apply along the last dimension. Choose be-
tween ‘mean’, ‘sum’ (applied along column dimension) or ‘none’, None for no reduction

• zero_diagonal¶ (Optional[bool]) – if the diagonal of the distance matrix should be set
to 0. If only x is given this defaults to True else if y is also given it defaults to False

Return type Tensor

Returns A [N,N] matrix of distances if only x is given, else a [N,M] matrix

Example

>>> import torch
>>> from torchmetrics.functional import pairwise_linear_similarity
>>> x = torch.tensor([[2, 3], [3, 5], [5, 8]], dtype=torch.float32)
>>> y = torch.tensor([[1, 0], [2, 1]], dtype=torch.float32)
>>> pairwise_linear_similarity(x, y)
tensor([[2., 7.],

[3., 11.],
[5., 18.]])

>>> pairwise_linear_similarity(x)
tensor([[0., 21., 34.],

[21., 0., 55.],
[34., 55., 0.]])

2.6. Functional metrics 171

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

pairwise_manhatten_distance [func]

torchmetrics.functional.pairwise_manhatten_distance(x, y=None, reduction=None,
zero_diagonal=None)

Calculates pairwise manhatten distance:

𝑑𝑚𝑎𝑛(𝑥, 𝑦) = ||𝑥− 𝑦||1 =

𝐷∑︁
𝑑=1

|𝑥𝑑 − 𝑦𝑑|

If both x and y are passed in, the calculation will be performed pairwise between the rows of x and y. If only x
is passed in, the calculation will be performed between the rows of x.

Parameters

• x¶ (Tensor) – Tensor with shape [N, d]

• y¶ (Optional[Tensor]) – Tensor with shape [M, d], optional

• reduction¶ (Optional[str]) – reduction to apply along the last dimension. Choose be-
tween ‘mean’, ‘sum’ (applied along column dimension) or ‘none’, None for no reduction

• zero_diagonal¶ (Optional[bool]) – if the diagonal of the distance matrix should be set
to 0. If only x is given this defaults to True else if y is also given it defaults to False

Return type Tensor

Returns A [N,N] matrix of distances if only x is given, else a [N,M] matrix

Example

>>> import torch
>>> from torchmetrics.functional import pairwise_manhatten_distance
>>> x = torch.tensor([[2, 3], [3, 5], [5, 8]], dtype=torch.float32)
>>> y = torch.tensor([[1, 0], [2, 1]], dtype=torch.float32)
>>> pairwise_manhatten_distance(x, y)
tensor([[4., 2.],

[7., 5.],
[12., 10.]])

>>> pairwise_manhatten_distance(x)
tensor([[0., 3., 8.],

[3., 0., 5.],
[8., 5., 0.]])

2.6.6 Retrieval

retrieval_average_precision [func]

torchmetrics.functional.retrieval_average_precision(preds, target)
Computes average precision (for information retrieval), as explained in IR Average precision.

preds and target should be of the same shape and live on the same device. If no target is True, 0 is returned.
target must be either bool or integers and preds must be float, otherwise an error is raised.

Parameters

• preds¶ (Tensor) – estimated probabilities of each document to be relevant.

172 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

• target¶ (Tensor) – ground truth about each document being relevant or not.

Return type Tensor

Returns a single-value tensor with the average precision (AP) of the predictions preds w.r.t. the
labels target.

Example

>>> from torchmetrics.functional import retrieval_average_precision
>>> preds = tensor([0.2, 0.3, 0.5])
>>> target = tensor([True, False, True])
>>> retrieval_average_precision(preds, target)
tensor(0.8333)

retrieval_reciprocal_rank [func]

torchmetrics.functional.retrieval_reciprocal_rank(preds, target)
Computes reciprocal rank (for information retrieval). See Mean Reciprocal Rank

preds and target should be of the same shape and live on the same device. If no target is True, 0 is returned.
target must be either bool or integers and preds must be float, otherwise an error is raised.

Parameters

• preds¶ (Tensor) – estimated probabilities of each document to be relevant.

• target¶ (Tensor) – ground truth about each document being relevant or not.

Return type Tensor

Returns a single-value tensor with the reciprocal rank (RR) of the predictions preds wrt the labels
target.

Example

>>> from torchmetrics.functional import retrieval_reciprocal_rank
>>> preds = torch.tensor([0.2, 0.3, 0.5])
>>> target = torch.tensor([False, True, False])
>>> retrieval_reciprocal_rank(preds, target)
tensor(0.5000)

retrieval_precision [func]

torchmetrics.functional.retrieval_precision(preds, target, k=None)
Computes the precision metric (for information retrieval). Precision is the fraction of relevant documents among
all the retrieved documents.

preds and target should be of the same shape and live on the same device. If no target is True, 0 is returned.
target must be either bool or integers and preds must be float, otherwise an error is raised. If you want to
measure Precision@K, k must be a positive integer.

Parameters

• preds¶ (Tensor) – estimated probabilities of each document to be relevant.

2.6. Functional metrics 173

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/Mean_reciprocal_rank
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

• target¶ (Tensor) – ground truth about each document being relevant or not.

• k¶ (Optional[int]) – consider only the top k elements (default: None, which considers
them all)

Return type Tensor

Returns a single-value tensor with the precision (at k) of the predictions preds w.r.t. the labels
target.

Raises ValueError – If k parameter is not None or an integer larger than 0

Example

>>> preds = tensor([0.2, 0.3, 0.5])
>>> target = tensor([True, False, True])
>>> retrieval_precision(preds, target, k=2)
tensor(0.5000)

retrieval_r_precision [func]

torchmetrics.functional.retrieval_r_precision(preds, target)
Computes the r-precision metric (for information retrieval). R-Precision is the fraction of relevant documents
among all the top k retrieved documents where k is equal to the total number of relevant documents.

preds and target should be of the same shape and live on the same device. If no target is True, 0 is returned.
target must be either bool or integers and preds must be float, otherwise an error is raised. If you want to
measure Precision@K, k must be a positive integer.

Parameters

• preds¶ (Tensor) – estimated probabilities of each document to be relevant.

• target¶ (Tensor) – ground truth about each document being relevant or not.

Return type Tensor

Returns a single-value tensor with the r-precision of the predictions preds w.r.t. the labels target.

Example

>>> preds = tensor([0.2, 0.3, 0.5])
>>> target = tensor([True, False, True])
>>> retrieval_r_precision(preds, target)
tensor(0.5000)

174 Chapter 2. More reading

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

retrieval_recall [func]

torchmetrics.functional.retrieval_recall(preds, target, k=None)
Computes the recall metric (for information retrieval). Recall is the fraction of relevant documents retrieved
among all the relevant documents.

preds and target should be of the same shape and live on the same device. If no target is True, 0 is returned.
target must be either bool or integers and preds must be float, otherwise an error is raised. If you want to
measure Recall@K, k must be a positive integer.

Parameters

• preds¶ (Tensor) – estimated probabilities of each document to be relevant.

• target¶ (Tensor) – ground truth about each document being relevant or not.

• k¶ (Optional[int]) – consider only the top k elements (default: None, which considers
them all)

Return type Tensor

Returns a single-value tensor with the recall (at k) of the predictions preds w.r.t. the labels target.

Raises ValueError – If k parameter is not None or an integer larger than 0

Example

>>> from torchmetrics.functional import retrieval_recall
>>> preds = tensor([0.2, 0.3, 0.5])
>>> target = tensor([True, False, True])
>>> retrieval_recall(preds, target, k=2)
tensor(0.5000)

retrieval_fall_out [func]

torchmetrics.functional.retrieval_fall_out(preds, target, k=None)
Computes the Fall-out (for information retrieval), as explained in IR Fall-out Fall-out is the fraction of non-
relevant documents retrieved among all the non-relevant documents.

preds and target should be of the same shape and live on the same device. If no target is True, 0 is returned.
target must be either bool or integers and preds must be float, otherwise an error is raised. If you want to
measure Fall-out@K, k must be a positive integer.

Parameters

• preds¶ (Tensor) – estimated probabilities of each document to be relevant.

• target¶ (Tensor) – ground truth about each document being relevant or not.

• k¶ (Optional[int]) – consider only the top k elements (default: None, which considers
them all)

Return type Tensor

Returns a single-value tensor with the fall-out (at k) of the predictions preds w.r.t. the labels
target.

Raises ValueError – If k parameter is not None or an integer larger than 0

2.6. Functional metrics 175

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Fall-out
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics.functional import retrieval_fall_out
>>> preds = tensor([0.2, 0.3, 0.5])
>>> target = tensor([True, False, True])
>>> retrieval_fall_out(preds, target, k=2)
tensor(1.)

retrieval_normalized_dcg [func]

torchmetrics.functional.retrieval_normalized_dcg(preds, target, k=None)
Computes Normalized Discounted Cumulative Gain (for information retrieval).

preds and target should be of the same shape and live on the same device. target must be either bool or
integers and preds must be float, otherwise an error is raised.

Parameters

• preds¶ (Tensor) – estimated probabilities of each document to be relevant.

• target¶ (Tensor) – ground truth about each document relevance.

• k¶ (Optional[int]) – consider only the top k elements (default: None, which considers
them all)

Return type Tensor

Returns a single-value tensor with the nDCG of the predictions preds w.r.t. the labels target.

Raises ValueError – If k parameter is not None or an integer larger than 0

Example

>>> from torchmetrics.functional import retrieval_normalized_dcg
>>> preds = torch.tensor([.1, .2, .3, 4, 70])
>>> target = torch.tensor([10, 0, 0, 1, 5])
>>> retrieval_normalized_dcg(preds, target)
tensor(0.6957)

retrieval_hit_rate [func]

torchmetrics.functional.retrieval_hit_rate(preds, target, k=None)
Computes the hit rate (for information retrieval). The hit rate is 1.0 if there is at least one relevant document
among all the top k retrieved documents.

preds and target should be of the same shape and live on the same device. If no target is True, 0 is returned.
target must be either bool or integers and preds must be float, otherwise an error is raised. If you want to
measure HitRate@K, k must be a positive integer.

Parameters

• preds¶ (Tensor) – estimated probabilities of each document to be relevant.

• target¶ (Tensor) – ground truth about each document being relevant or not.

• k¶ (Optional[int]) – consider only the top k elements (default: None, which considers
them all)

176 Chapter 2. More reading

https://en.wikipedia.org/wiki/Discounted_cumulative_gain
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

PyTorch-Metrics Documentation, Release 0.6.2

Return type Tensor

Returns a single-value tensor with the hit rate (at k) of the predictions predsw.r.t. the labels target.

Raises ValueError – If k parameter is not None or an integer larger than 0

Example

>>> preds = tensor([0.2, 0.3, 0.5])
>>> target = tensor([True, False, True])
>>> retrieval_hit_rate(preds, target, k=2)
tensor(1.)

2.6.7 Text

bert_score [func]

torchmetrics.functional.bert_score(predictions, references, model_name_or_path=None,
num_layers=None, all_layers=False, model=None,
user_tokenizer=None, user_forward_fn=None, verbose=False,
idf=False, device=None, max_length=512, batch_size=64,
num_threads=4, return_hash=False, lang='en',
rescale_with_baseline=False, baseline_path=None,
baseline_url=None)

Bert_score Evaluating Text Generation leverages the pre-trained contextual embeddings from BERT and matches
words in candidate and reference sentences by cosine similarity. It has been shown to correlate with human
judgment on sentence-level and system-level evaluation. Moreover, BERTScore computes precision, recall, and
F1 measure, which can be useful for evaluating different language generation tasks.

This implemenation follows the original implementation from BERT_score

Parameters

• predictions¶ (Union[List[str], Dict[str, Tensor]]) – Either an iterable of predicted
sentences or a Dict[str, torch.Tensor] containing input_ids and attention_mask torch.Tensor.

• references¶ (Union[List[str], Dict[str, Tensor]]) – Either an iterable of target sen-
tences or a Dict[str, torch.Tensor] containing input_ids and attention_mask torch.Tensor.

• model_name_or_path¶ (Optional[str]) – A name or a model path used to load trans-
formers pretrained model.

• num_layers¶ (Optional[int]) – A layer of representation to use.

• all_layers¶ (bool) – An indication of whether the representation from all model’s layers
should be used. If all_layers = True, the argument num_layers is ignored.

• model¶ (Optional[Module]) – A user’s own model. Must be of torch.nn.Module instance.

• user_tokenizer¶ (Optional[Any]) – A user’s own tokenizer used with the own model.
This must be an instance with the __call__ method. This method must take an iterable of
sentences (List[str]) and must return a python dictionary containing “input_ids” and “atten-
tion_mask” represented by torch.Tensor. It is up to the user’s model of whether “input_ids”
is a torch.Tensor of input ids or embedding vectors. This tokenizer must prepend an equiv-
alent of [CLS] token and append an equivalent of [SEP] token as transformers tokenizer
does.

2.6. Functional metrics 177

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1904.09675
https://github.com/Tiiiger/bert_score/blob/master/bert_score/utils.py
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

PyTorch-Metrics Documentation, Release 0.6.2

• user_forward_fn¶ (Optional[Callable[[Module, Dict[str, Tensor]], Tensor]]) –
A user’s own forward function used in a combination with user_model. This function must
take user_model and a python dictionary of containing “input_ids” and “attention_mask”
represented by torch.Tensor as an input and return the model’s output represented by the
single torch.Tensor.

• verbose¶ (bool) – An indication of whether a progress bar to be displayed during the
embeddings calculation.

• idf¶ (bool) – An indication of whether normalization using inverse document frequencies
should be used.

• device¶ (Union[str, device, None]) – A device to be used for calculation.

• max_length¶ (int) – A maximum length of input sequences. Sequences longer than
max_length are to be trimmed.

• batch_size¶ (int) – A batch size used for model processing.

• num_threads¶ (int) – A number of threads to use for a dataloader.

• return_hash¶ (bool) – An indication of whether the correspodning hash_code should be
returned.

• lang¶ (str) – A language of input sentences. It is used when the scores are rescaled with a
baseline.

• rescale_with_baseline¶ (bool) – An indication of whether bertscore should be rescaled
with a pre-computed baseline. When a pretrained model from transformers model is
used, the corresponding baseline is downloaded from the original bert-score package from
BERT_score if available. In other cases, please specify a path to the baseline csv/tsv file,
which must follow the formatting of the files from BERT_score

• baseline_path¶ (Optional[str]) – A path to the user’s own local csv/tsv file with the
baseline scale.

• baseline_url¶ (Optional[str]) – A url path to the user’s own csv/tsv file with the base-
line scale.

Return type Dict[str, Union[List[float], str]]

Returns Python dictionary containing the keys precision, recall and f1 with corresponding values.

Raises

• ValueError – If len(predictions) != len(references).

• ValueError – If tqdm package is required and not installed.

• ValueError – If transformers package is required and not installed.

• ValueError – If num_layer is larger than the number of the model layers.

• ValueError – If invalid input is provided.

178 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://github.com/Tiiiger/bert_score/blob/master/bert_score/utils.py
https://github.com/Tiiiger/bert_score/blob/master/bert_score/utils.py
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "master kenobi"]
>>> bert_score(predictions=predictions, references=references, lang="en")
{'precision': [0.99..., 0.99...],
'recall': [0.99..., 0.99...],
'f1': [0.99..., 0.99...]}

bleu_score [func]

torchmetrics.functional.bleu_score(reference_corpus, translate_corpus, n_gram=4, smooth=False)
Calculate BLEU score of machine translated text with one or more references.

Parameters

• reference_corpus¶ (Sequence[Sequence[Sequence[str]]]) – An iterable of iterables
of reference corpus

• translate_corpus¶ (Sequence[Sequence[str]]) – An iterable of machine translated
corpus

• n_gram¶ (int) – Gram value ranged from 1 to 4 (Default 4)

• smooth¶ (bool) – Whether or not to apply smoothing – see [2]

Return type Tensor

Returns Tensor with BLEU Score

Example

>>> from torchmetrics.functional import bleu_score
>>> translate_corpus = ['the cat is on the mat'.split()]
>>> reference_corpus = [['there is a cat on the mat'.split(), 'a cat is on the mat'.
→˓split()]]
>>> bleu_score(reference_corpus, translate_corpus)
tensor(0.7598)

References

[1] BLEU: a Method for Automatic Evaluation of Machine Translation by Papineni, Kishore, Salim Roukos,
Todd Ward, and Wei-Jing Zhu BLEU

[2] Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-
Bigram Statistics by Chin-Yew Lin and Franz Josef Och Machine Translation Evolution

2.6. Functional metrics 179

https://en.wikipedia.org/wiki/BLEU
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
http://www.aclweb.org/anthology/P02-1040.pdf
https://aclanthology.org/P04-1077.pdf

PyTorch-Metrics Documentation, Release 0.6.2

char_error_rate [func]

torchmetrics.functional.char_error_rate(predictions, references)
character error rate is a common metric of the performance of an automatic speech recognition sys-
tem. This value indicates the percentage of characters that were incorrectly predicted. The lower
the value, the better the performance of the ASR system with a CER of 0 being a perfect score.
:type _sphinx_paramlinks_torchmetrics.functional.char_error_rate.predictions: Union[str, List[str]] :param
_sphinx_paramlinks_torchmetrics.functional.char_error_rate.predictions: Transcription(s) to score as a string
or list of strings :type _sphinx_paramlinks_torchmetrics.functional.char_error_rate.references: Union[str,
List[str]] :param _sphinx_paramlinks_torchmetrics.functional.char_error_rate.references: Reference(s) for
each speech input as a string or list of strings

Return type Tensor

Returns (Tensor) Character error rate

Examples

>>> predictions = ["this is the prediction", "there is an other sample"]
>>> references = ["this is the reference", "there is another one"]
>>> char_error_rate(predictions=predictions, references=references)
tensor(0.3415)

rouge_score [func]

torchmetrics.functional.rouge_score(preds, targets, use_stemmer=False, rouge_keys=('rouge1', 'rouge2',
'rougeL', 'rougeLsum'))

Calculate Calculate Rouge Score , used for automatic summarization.

Parameters

• preds¶ (Union[str, List[str]]) – An iterable of predicted sentences or a single predicted
sentence.

• targets¶ (Union[str, List[str]]) – An iterable of target sentences or a single target sen-
tence.

• use_stemmer¶ (bool) – Use Porter stemmer to strip word suffixes to improve matching.

• rouge_keys¶ (Union[str, Tuple[str, . . .]]) – A list of rouge types to calculate. Keys that
are allowed are rougeL, rougeLsum, and rouge1 through rouge9.

Return type Dict[str, Tensor]

Returns Python dictionary of rouge scores for each input rouge key.

180 Chapter 2. More reading

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://en.wikipedia.org/wiki/ROUGE_(metric)
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> targets = "Is your name John"
>>> preds = "My name is John"
>>> from pprint import pprint
>>> pprint(rouge_score(preds, targets))
{'rouge1_fmeasure': 0.25,
'rouge1_precision': 0.25,
'rouge1_recall': 0.25,
'rouge2_fmeasure': 0.0,
'rouge2_precision': 0.0,
'rouge2_recall': 0.0,
'rougeL_fmeasure': 0.25,
'rougeL_precision': 0.25,
'rougeL_recall': 0.25,
'rougeLsum_fmeasure': 0.25,
'rougeLsum_precision': 0.25,
'rougeLsum_recall': 0.25}

Raises

• ValueError – If the python package nltk is not installed.

• ValueError – If any of the rouge_keys does not belong to the allowed set of keys.

References

[1] ROUGE: A Package for Automatic Evaluation of Summaries by Chin-Yew Lin. https://aclanthology.org/
W04-1013/

sacre_bleu_score [func]

torchmetrics.functional.sacre_bleu_score(reference_corpus, translate_corpus, n_gram=4, smooth=False,
tokenize='13a', lowercase=False)

Calculate BLEU score [1] of machine translated text with one or more references. This implementation follows
the behaviour of SacreBLEU [2] implementation from https://github.com/mjpost/sacrebleu.

Parameters

• reference_corpus¶ (Sequence[Sequence[str]]) – An iterable of iterables of reference
corpus

• translate_corpus¶ (Sequence[str]) – An iterable of machine translated corpus

• n_gram¶ (int) – Gram value ranged from 1 to 4 (Default 4)

• smooth¶ (bool) – Whether or not to apply smoothing – see [2]

• tokenize¶ (Literal[‘none’, ‘13a’, ‘zh’, ‘intl’, ‘char’]) – Tokenization technique to be used.
(Default ‘13a’) Supported tokenization: [‘none’, ‘13a’, ‘zh’, ‘intl’, ‘char’]

• lowercase¶ (bool) – If True, BLEU score over lowercased text is calculated.

Return type Tensor

Returns Tensor with BLEU Score

2.6. Functional metrics 181

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://en.wikipedia.org/wiki/BLEU
https://github.com/mjpost/sacrebleu
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

Example

>>> from torchmetrics.functional import sacre_bleu_score
>>> translate_corpus = ['the cat is on the mat']
>>> reference_corpus = [['there is a cat on the mat', 'a cat is on the mat']]
>>> sacre_bleu_score(reference_corpus, translate_corpus)
tensor(0.7598)

References

[1] BLEU: a Method for Automatic Evaluation of Machine Translation by Papineni, Kishore, Salim Roukos,
Todd Ward, and Wei-Jing Zhu BLEU

[2] A Call for Clarity in Reporting BLEU Scores by Matt Post.

[3] Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-
Bigram Statistics by Chin-Yew Lin and Franz Josef Och Machine Translation Evolution

wer [func]

torchmetrics.functional.wer(predictions, references, concatenate_texts=None)
Word error rate (WER) is a common metric of the performance of an automatic speech recognition system.
This value indicates the percentage of words that were incorrectly predicted. The lower the value, the better the
performance of the ASR system with a WER of 0 being a perfect score.

Parameters

• predictions¶ (Union[str, List[str]]) – Transcription(s) to score as a string or list of
strings

• references¶ (Union[str, List[str]]) – Reference(s) for each speech input as a string or
list of strings

• concatenate_texts¶ (Optional[bool]) – Whether to concatenate all input texts or com-
pute WER iteratively This argument is deprecated in v0.6 and it will be removed in v0.7.

Return type Tensor

Returns (Tensor) Word error rate

Examples

>>> predictions = ["this is the prediction", "there is an other sample"]
>>> references = ["this is the reference", "there is another one"]
>>> wer(predictions=predictions, references=references)
tensor(0.5000)

182 Chapter 2. More reading

http://www.aclweb.org/anthology/P02-1040.pdf
https://aclanthology.org/P04-1077.pdf
https://en.wikipedia.org/wiki/Word_error_rate
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

PyTorch-Metrics Documentation, Release 0.6.2

2.7 Contributor Covenant Code of Conduct

2.7.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

2.7.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

2.7.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

2.7.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

2.7. Contributor Covenant Code of Conduct 183

PyTorch-Metrics Documentation, Release 0.6.2

2.7.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
waf2107@columbia.edu. All complaints will be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard
to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

2.7.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.contributor-
covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

2.8 Contributing

Welcome to the Torchmetrics community! We’re building largest collection of native pytorch metrics, with the goal of
reducing boilerplate and increasing reproducibility.

2.8.1 Contribution Types

We are always looking for help implementing new features or fixing bugs.

Bug Fixes:

1. If you find a bug please submit a github issue.

• Make sure the title explains the issue.

• Describe your setup, what you are trying to do, expected vs. actual behaviour. Please add configs and code
samples.

• Add details on how to reproduce the issue - a minimal test case is always best, colab is also great. Note,
that the sample code shall be minimal and if needed with publicly available data.

2. Try to fix it or recommend a solution. We highly recommend to use test-driven approach:

• Convert your minimal code example to a unit/integration test with assert on expected results.

• Start by debugging the issue. . . You can run just this particular test in your IDE and draft a fix.

• Verify that your test case fails on the master branch and only passes with the fix applied.

3. Submit a PR!

Note, even if you do not find the solution, sending a PR with a test covering the issue is a valid contribution and we can
help you or finish it with you :]

184 Chapter 2. More reading

https://www.contributor-covenant.org

PyTorch-Metrics Documentation, Release 0.6.2

New Features:

1. Submit a github issue - describe what is the motivation of such feature (adding the use case or an example is
helpful).

2. Let’s discuss to determine the feature scope.

3. Submit a PR! We recommend test driven approach to adding new features as well:

• Write a test for the functionality you want to add.

• Write the functional code until the test passes.

4. Add/update the relevant tests!

• This PR is a good example for adding a new metric

Test cases:

Want to keep Torchmetrics healthy? Love seeing those green tests? So do we! How to we keep it that way? We write
tests! We value tests contribution even more than new features. One of the core values of torchmetrics is that our users
can trust our metric implementation. We can only guarantee this if our metrics are well tested.

2.8.2 Guidelines

Developments scripts

To build the documentation locally, simply execute the following commands from project root (only for Unix):

• make clean cleans repo from temp/generated files

• make docs builds documentation under docs/build/html

• make test runs all project’s tests with coverage

Original code

All added or edited code shall be the own original work of the particular contributor. If you use some third-party
implementation, all such blocks/functions/modules shall be properly referred and if possible also agreed by code’s
author. For example - This code is inspired from http://.... In case you adding new dependencies, make
sure that they are compatible with the actual Torchmetrics license (ie. dependencies should be at least as permissive
as the Torchmetrics license).

Coding Style

1. Use f-strings for output formation (except logging when we stay with lazy logging.info("Hello %s!",
name).

2. You can use pre-commit to make sure your code style is correct.

2.8. Contributing 185

https://github.com/PyTorchLightning/pytorch-lightning/pull/5241

PyTorch-Metrics Documentation, Release 0.6.2

Documentation

We are using Sphinx with Napoleon extension. Moreover, we set Google style to follow with type convention.

• Napoleon formatting with Google style

• ReStructured Text (reST)

• Paragraph-level markup

See following short example of a sample function taking one position string and optional

from typing import Optional

def my_func(param_a: int, param_b: Optional[float] = None) -> str:
"""Sample function.

Args:
param_a: first parameter
param_b: second parameter

Return:
sum of both numbers

Example:
Sample doctest example...
>>> my_func(1, 2)
3

.. note:: If you want to add something.
"""
p = param_b if param_b else 0
return str(param_a + p)

When updating the docs make sure to build them first locally and visually inspect the html files (in the browser) for
formatting errors. In certain cases, a missing blank line or a wrong indent can lead to a broken layout. Run these
commands

make docs

and open docs/build/html/index.html in your browser.

Notes:

• You need to have LaTeX installed for rendering math equations. You can for example install TeXLive by doing
one of the following:

– on Ubuntu (Linux) run apt-get install texlive or otherwise follow the instructions on the TeXLive
website

– use the RTD docker image

• with PL used class meta you need to use python 3.7 or higher

When you send a PR the continuous integration will run tests and build the docs.

186 Chapter 2. More reading

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://docs.pylonsproject.org/projects/docs-style-guide/
https://www.sphinx-doc.org/en/1.5/markup/para.html
https://hub.docker.com/r/readthedocs/build

PyTorch-Metrics Documentation, Release 0.6.2

Testing

Local: Testing your work locally will help you speed up the process since it allows you to focus on particular (failing)
test-cases. To setup a local development environment, install both local and test dependencies:

python -m pip install -r requirements/test.txt
python -m pip install pre-commit

You can run the full test-case in your terminal via this make script:

make test
or natively
python -m pytest torchmetrics tests

Note: if your computer does not have multi-GPU nor TPU these tests are skipped.

GitHub Actions: For convenience, you can also use your own GHActions building which will be triggered with each
commit. This is useful if you do not test against all required dependency versions.

2.9 Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Note: we move fast, but still we preserve 0.1 version (one feature release) back compatibility.

2.9.1 [0.6.2] - 2021-12-15

[0.6.2] - Fixed

• Fixed torch.sort currently does not support bool dtype on CUDA (#665)

• Fixed mAP properly checks if ground truths are empty (#684)

• Fixed initialization of tensors to be on correct device for MAP metric (#673)

2.9.2 [0.6.1] - 2021-12-06

[0.6.1] - Changed

• Migrate MAP metrics from pycocotools to PyTorch (#632)

• Use torch.topk instead of torch.argsort in retrieval precision for speedup (#627)

2.9. Changelog 187

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://github.com/PyTorchLightning/metrics/pull/665
https://github.com/PyTorchLightning/metrics/pull/684
https://github.com/PyTorchLightning/metrics/pull/673
https://github.com/PyTorchLightning/metrics/pull/632
https://github.com/PyTorchLightning/metrics/pull/627

PyTorch-Metrics Documentation, Release 0.6.2

[0.6.1] - Fixed

• Fix empty predictions in MAP metric (#594, #610, #624)

• Fix edge case of AUROC with average=weighted on GPU (#606)

• Fixed forward in compositional metrics (#645)

2.9.3 [0.6.0] - 2021-10-28

[0.6.0] - Added

• Added audio metrics:

– Perceptual Evaluation of Speech Quality (PESQ) (#353)

– Short Term Objective Intelligibility (STOI) (#353)

• Added Information retrieval metrics:

– RetrievalRPrecision (#577)

– RetrievalHitRate (#576)

• Added NLP metrics:

– SacreBLEUScore (#546)

– CharErrorRate (#575)

• Added other metrics:

– Tweedie Deviance Score (#499)

– Learned Perceptual Image Patch Similarity (LPIPS) (#431)

• Added MAP (mean average precision) metric to new detection package (#467)

• Added support for float targets in nDCG metric (#437)

• Added average argument to AveragePrecision metric for reducing multi-label and multi-class problems
(#477)

• Added MultioutputWrapper (#510)

• Added metric sweeping:

– higher_is_better as constant attribute (#544)

– higher_is_better to rest of codebase (#584)

• Added simple aggregation metrics: SumMetric, MeanMetric, CatMetric, MinMetric, MaxMetric (#506)

• Added pairwise submodule with metrics (#553)

– pairwise_cosine_similarity

– pairwise_euclidean_distance

– pairwise_linear_similarity

– pairwise_manhatten_distance

188 Chapter 2. More reading

https://github.com/PyTorchLightning/metrics/pull/594
https://github.com/PyTorchLightning/metrics/pull/610
https://github.com/PyTorchLightning/metrics/pull/624
https://github.com/PyTorchLightning/metrics/pull/606
https://github.com/PyTorchLightning/metrics/pull/645
https://github.com/PyTorchLightning/metrics/pull/353
https://github.com/PyTorchLightning/metrics/pull/353
https://github.com/PyTorchLightning/metrics/pull/577
https://github.com/PyTorchLightning/metrics/pull/576
https://github.com/PyTorchLightning/metrics/pull/546
https://github.com/PyTorchLightning/metrics/pull/575
https://github.com/PyTorchLightning/metrics/pull/499
https://github.com/PyTorchLightning/metrics/pull/431
https://github.com/PyTorchLightning/metrics/pull/467
https://github.com/PyTorchLightning/metrics/pull/437
https://github.com/PyTorchLightning/metrics/pull/477
https://github.com/PyTorchLightning/metrics/pull/510
https://github.com/PyTorchLightning/metrics/pull/544
https://github.com/PyTorchLightning/metrics/pull/584
https://github.com/PyTorchLightning/metrics/pull/506
https://github.com/PyTorchLightning/metrics/pull/553

PyTorch-Metrics Documentation, Release 0.6.2

[0.6.0] - Changed

• AveragePrecisionwill now as default output the macro average for multilabel and multiclass problems (#477)

• half, double, float will no longer change the dtype of the metric states. Use metric.set_dtype instead
(#493)

• Renamed AverageMeter to MeanMetric (#506)

• Changed is_differentiable from property to a constant attribute (#551)

• ROC and AUROC will no longer throw an error when either the positive or negative class is missing. Instead return
0 score and give a warning

[0.6.0] - Deprecated

• Deprecated torchmetrics.functional.self_supervised.embedding_similarity in favour of new
pairwise submodule

[0.6.0] - Removed

• Removed dtype property (#493)

[0.6.0] - Fixed

• Fixed bug in F1 with average='macro' and ignore_index!=None (#495)

• Fixed bug in pit by using the returned first result to initialize device and type (#533)

• Fixed SSIM metric using too much memory (#539)

• Fixed bug where device property was not properly update when metric was a child of a module (#542)

2.9.4 [0.5.1] - 2021-08-30

[0.5.1] - Added

• Added device and dtype properties (#462)

• Added TextTester class for robustly testing text metrics (#450)

[0.5.1] - Changed

• Added support for float targets in nDCG metric (#437)

2.9. Changelog 189

https://github.com/PyTorchLightning/metrics/pull/477
https://github.com/PyTorchLightning/metrics/pull/493
https://github.com/PyTorchLightning/metrics/pull/506
https://github.com/PyTorchLightning/metrics/pull/551
https://github.com/PyTorchLightning/metrics/pull/493
https://github.com/PyTorchLightning/metrics/pull/495
https://github.com/PyTorchLightning/metrics/pull/533
https://github.com/PyTorchLightning/metrics/pull/539
https://github.com/PyTorchLightning/metrics/pull/542
https://github.com/PyTorchLightning/metrics/pull/462
https://github.com/PyTorchLightning/metrics/pull/450
https://github.com/PyTorchLightning/metrics/pull/437

PyTorch-Metrics Documentation, Release 0.6.2

[0.5.1] - Removed

• Removed rouge-score as dependency for text package (#443)

• Removed jiwer as dependency for text package (#446)

• Removed bert-score as dependency for text package (#473)

[0.5.1] - Fixed

• Fixed ranking of samples in SpearmanCorrCoef metric (#448)

• Fixed bug where compositional metrics where unable to sync because of type mismatch (#454)

• Fixed metric hashing (#478)

• Fixed BootStrapper metrics not working on GPU (#462)

• Fixed the semantic ordering of kernel height and width in SSIM metric (#474)

2.9.5 [0.5.0] - 2021-08-09

[0.5.0] - Added

• Added Text-related (NLP) metrics:

– Word Error Rate (WER) (#383)

– ROUGE (#399)

– BERT score (#424)

– BLUE score (#360)

• Added MetricTracker wrapper metric for keeping track of the same metric over multiple epochs (#238)

• Added other metrics:

– Symmetric Mean Absolute Percentage error (SMAPE) (#375)

– Calibration error (#394)

– Permutation Invariant Training (PIT) (#384)

• Added support in nDCG metric for target with values larger than 1 (#349)

• Added support for negative targets in nDCG metric (#378)

• Added None as reduction option in CosineSimilarity metric (#400)

• Allowed passing labels in (n_samples, n_classes) to AveragePrecision (#386)

190 Chapter 2. More reading

https://github.com/PyTorchLightning/metrics/pull/443
https://github.com/PyTorchLightning/metrics/pull/446
https://github.com/PyTorchLightning/metrics/pull/473
https://github.com/PyTorchLightning/metrics/pull/448
https://github.com/PyTorchLightning/metrics/pull/454
https://github.com/PyTorchLightning/metrics/pull/478
https://github.com/PyTorchLightning/metrics/pull/462
https://github.com/PyTorchLightning/metrics/pull/474
https://github.com/PyTorchLightning/metrics/pull/383
https://github.com/PyTorchLightning/metrics/pull/399
https://github.com/PyTorchLightning/metrics/pull/424
https://github.com/PyTorchLightning/metrics/pull/360
https://github.com/PyTorchLightning/metrics/pull/238
https://github.com/PyTorchLightning/metrics/pull/375
https://github.com/PyTorchLightning/metrics/pull/394
https://github.com/PyTorchLightning/metrics/pull/384
https://github.com/PyTorchLightning/metrics/pull/349
https://github.com/PyTorchLightning/metrics/pull/378
https://github.com/PyTorchLightning/metrics/pull/400
https://github.com/PyTorchLightning/metrics/pull/386

PyTorch-Metrics Documentation, Release 0.6.2

[0.5.0] - Changed

• Moved psnr and ssim from functional.regression.* to functional.image.* (#382)

• Moved image_gradient from functional.image_gradients to functional.image.gradients (#381)

• Moved R2Score from regression.r2score to regression.r2 (#371)

• Pearson metric now only store 6 statistics instead of all predictions and targets (#380)

• Use torch.argmax instead of torch.topk when k=1 for better performance (#419)

• Moved check for number of samples in R2 score to support single sample updating (#426)

[0.5.0] - Deprecated

• Rename r2score >> r2_score and kldivergence >> kl_divergence in functional (#371)

• Moved bleu_score from functional.nlp to functional.text.bleu (#360)

[0.5.0] - Removed

• Removed restriction that threshold has to be in (0,1) range to support logit input (#351 #401)

• Removed restriction that preds could not be bigger than num_classes to support logit input (#357)

• Removed module regression.psnr and regression.ssim (#382):

• Removed (#379):

– function functional.mean_relative_error

– num_thresholds argument in BinnedPrecisionRecallCurve

[0.5.0] - Fixed

• Fixed bug where classification metrics with average='macro'would lead to wrong result if a class was missing
(#303)

• Fixed weighted, multi-class AUROC computation to allow for 0 observations of some class, as contribution
to final AUROC is 0 (#376)

• Fixed that _forward_cache and _computed attributes are also moved to the correct device if metric is moved
(#413)

• Fixed calculation in IoU metric when using ignore_index argument (#328)

2.9.6 [0.4.1] - 2021-07-05

[0.4.1] - Changed

• Extend typing (#330, #332, #333, #335, #314)

2.9. Changelog 191

https://github.com/PyTorchLightning/metrics/pull/382
https://github.com/PyTorchLightning/metrics/pull/381
https://github.com/PyTorchLightning/metrics/pull/371
https://github.com/PyTorchLightning/metrics/pull/380
https://github.com/PyTorchLightning/metrics/pull/419
https://github.com/PyTorchLightning/metrics/pull/426
https://github.com/PyTorchLightning/metrics/pull/371
https://github.com/PyTorchLightning/metrics/pull/360
https://github.com/PyTorchLightning/metrics/pull/351
https://github.com/PyTorchLightning/metrics/pull/401
https://github.com/PyTorchLightning/metrics/pull/357
https://github.com/PyTorchLightning/metrics/pull/382
https://github.com/PyTorchLightning/metrics/pull/379
https://github.com/PyTorchLightning/metrics/pull/303
https://github.com/PyTorchLightning/metrics/pull/376
https://github.com/PyTorchLightning/metrics/pull/413
https://github.com/PyTorchLightning/metrics/pull/328
https://github.com/PyTorchLightning/metrics/pull/330
https://github.com/PyTorchLightning/metrics/pull/332
https://github.com/PyTorchLightning/metrics/pull/333
https://github.com/PyTorchLightning/metrics/pull/335
https://github.com/PyTorchLightning/metrics/pull/314

PyTorch-Metrics Documentation, Release 0.6.2

[0.4.1] - Fixed

• Fixed DDP by is_sync logic to Metric (#339)

2.9.7 [0.4.0] - 2021-06-29

[0.4.0] - Added

• Added Image-related metrics:

– Fréchet inception distance (FID) (#213)

– Kernel Inception Distance (KID) (#301)

– Inception Score (#299)

– KL divergence (#247)

• Added Audio metrics: SNR, SI_SDR, SI_SNR (#292)

• Added other metrics:

– Cosine Similarity (#305)

– Specificity (#210)

– Mean Absolute Percentage error (MAPE) (#248)

• Added add_metrics method to MetricCollection for adding additional metrics after initialization (#221)

• Added pre-gather reduction in the case of dist_reduce_fx="cat" to reduce communication cost (#217)

• Added better error message for AUROC when num_classes is not provided for multiclass input (#244)

• Added support for unnormalized scores (e.g. logits) in Accuracy, Precision, Recall, FBeta, F1, StatScore,
Hamming, ConfusionMatrix metrics (#200)

• Added squared argument to MeanSquaredError for computing RMSE (#249)

• Added is_differentiable property to ConfusionMatrix, F1, FBeta, Hamming, Hinge, IOU,
MatthewsCorrcoef, Precision, Recall, PrecisionRecallCurve, ROC, StatScores (#253)

• Added sync and sync_context methods for manually controlling when metric states are synced (#302)

[0.4.0] - Changed

• Forward cache is reset when reset method is called (#260)

• Improved per-class metric handling for imbalanced datasets for precision, recall, precision_recall,
fbeta, f1, accuracy, and specificity (#204)

• Decorated torch.jit.unused to MetricCollection forward (#307)

• Renamed thresholds argument to binned metrics for manually controlling the thresholds (#322)

• Extend typing (#324, #326, #327)

192 Chapter 2. More reading

https://github.com/PyTorchLightning/metrics/pull/339
https://github.com/PyTorchLightning/metrics/pull/213
https://github.com/PyTorchLightning/metrics/pull/301
https://github.com/PyTorchLightning/metrics/pull/299
https://github.com/PyTorchLightning/metrics/pull/247
https://github.com/PyTorchLightning/metrics/pull/292
https://github.com/PyTorchLightning/metrics/pull/305
https://github.com/PyTorchLightning/metrics/pull/210
https://github.com/PyTorchLightning/metrics/pull/248
https://github.com/PyTorchLightning/metrics/pull/221
https://github.com/PyTorchLightning/metrics/pull/217
https://github.com/PyTorchLightning/metrics/pull/244
https://github.com/PyTorchLightning/metrics/pull/200
https://github.com/PyTorchLightning/metrics/pull/249
https://github.com/PyTorchLightning/metrics/pull/253
https://github.com/PyTorchLightning/metrics/pull/302
https://github.com/PyTorchLightning/metrics/pull/260
https://github.com/PyTorchLightning/metrics/pull/204
https://github.com/PyTorchLightning/metrics/pull/307
https://github.com/PyTorchLightning/metrics/pull/322
https://github.com/PyTorchLightning/metrics/pull/324
https://github.com/PyTorchLightning/metrics/pull/326
https://github.com/PyTorchLightning/metrics/pull/327

PyTorch-Metrics Documentation, Release 0.6.2

[0.4.0] - Deprecated

• Deprecated functional.mean_relative_error, use functional.mean_absolute_percentage_error
(#248)

• Deprecated num_thresholds argument in BinnedPrecisionRecallCurve (#322)

[0.4.0] - Removed

• Removed argument is_multiclass (#319)

[0.4.0] - Fixed

• AUC can also support more dimensional inputs when all but one dimension are of size 1 (#242)

• Fixed dtype of modular metrics after reset has been called (#243)

• Fixed calculation in matthews_corrcoef to correctly match formula (#321)

2.9.8 [0.3.2] - 2021-05-10

[0.3.2] - Added

• Added is_differentiable property:

– To AUC, AUROC, CohenKappa and AveragePrecision (#178)

– To PearsonCorrCoef, SpearmanCorrcoef, R2Score and ExplainedVariance (#225)

[0.3.2] - Changed

• MetricCollection should return metrics with prefix on items(), keys() (#209)

• Calling compute before update will now give warning (#164)

[0.3.2] - Removed

• Removed numpy as direct dependency (#212)

[0.3.2] - Fixed

• Fixed auc calculation and add tests (#197)

• Fixed loading persisted metric states using load_state_dict() (#202)

• Fixed PSNR not working with DDP (#214)

• Fixed metric calculation with unequal batch sizes (#220)

• Fixed metric concatenation for list states for zero-dim input (#229)

• Fixed numerical instability in AUROC metric for large input (#230)

2.9. Changelog 193

https://github.com/PyTorchLightning/metrics/pull/248
https://github.com/PyTorchLightning/metrics/pull/322
https://github.com/PyTorchLightning/metrics/pull/319
https://github.com/PyTorchLightning/metrics/pull/242
https://github.com/PyTorchLightning/metrics/pull/243
https://github.com/PyTorchLightning/metrics/pull/321
https://github.com/PyTorchLightning/metrics/pull/178
https://github.com/PyTorchLightning/metrics/pull/225
https://github.com/PyTorchLightning/metrics/pull/209
https://github.com/PyTorchLightning/metrics/pull/164
https://github.com/PyTorchLightning/metrics/pull/212
https://github.com/PyTorchLightning/metrics/pull/197
https://github.com/PyTorchLightning/metrics/pull/202
https://github.com/PyTorchLightning/metrics/pull/214
https://github.com/PyTorchLightning/metrics/pull/220
https://github.com/PyTorchLightning/metrics/pull/229
https://github.com/PyTorchLightning/metrics/pull/230

PyTorch-Metrics Documentation, Release 0.6.2

2.9.9 [0.3.1] - 2021-04-21

• Cleaning remaining inconsistency and fix PL develop integration (#191, #192, #193, #194)

2.9.10 [0.3.0] - 2021-04-20

[0.3.0] - Added

• Added BootStrapper to easily calculate confidence intervals for metrics (#101)

• Added Binned metrics (#128)

• Added metrics for Information Retrieval ((PL^5032)):

– RetrievalMAP (PL^5032)

– RetrievalMRR (#119)

– RetrievalPrecision (#139)

– RetrievalRecall (#146)

– RetrievalNormalizedDCG (#160)

– RetrievalFallOut (#161)

• Added other metrics:

– CohenKappa (#69)

– MatthewsCorrcoef (#98)

– PearsonCorrcoef (#157)

– SpearmanCorrcoef (#158)

– Hinge (#120)

• Added average='micro' as an option in AUROC for multilabel problems (#110)

• Added multilabel support to ROC metric (#114)

• Added testing for half precision (#77, #135)

• Added AverageMeter for ad-hoc averages of values (#138)

• Added prefix argument to MetricCollection (#70)

• Added __getitem__ as metric arithmetic operation (#142)

• Added property is_differentiable to metrics and test for differentiability (#154)

• Added support for average, ignore_index and mdmc_average in Accuracy metric (#166)

• Added postfix arg to MetricCollection (#188)

194 Chapter 2. More reading

https://github.com/PyTorchLightning/metrics/pull/191
https://github.com/PyTorchLightning/metrics/pull/192
https://github.com/PyTorchLightning/metrics/pull/193
https://github.com/PyTorchLightning/metrics/pull/194
https://github.com/PyTorchLightning/metrics/pull/101
https://github.com/PyTorchLightning/metrics/pull/128
https://github.com/PyTorchLightning/pytorch-lightning/pull/5032
https://github.com/PyTorchLightning/pytorch-lightning/pull/5032
https://github.com/PyTorchLightning/metrics/pull/119
https://github.com/PyTorchLightning/metrics/pull/139
https://github.com/PyTorchLightning/metrics/pull/146
https://github.com/PyTorchLightning/metrics/pull/160
https://github.com/PyTorchLightning/metrics/pull/161
https://github.com/PyTorchLightning/metrics/pull/69
https://github.com/PyTorchLightning/metrics/pull/98
https://github.com/PyTorchLightning/metrics/pull/157
https://github.com/PyTorchLightning/metrics/pull/158
https://github.com/PyTorchLightning/metrics/pull/120
https://github.com/PyTorchLightning/metrics/pull/110
https://github.com/PyTorchLightning/metrics/pull/114
https://github.com/PyTorchLightning/metrics/pull/77
https://github.com/PyTorchLightning/metrics/pull/135
https://github.com/PyTorchLightning/metrics/pull/138
https://github.com/PyTorchLightning/metrics/pull/70
https://github.com/PyTorchLightning/metrics/pull/142
https://github.com/PyTorchLightning/metrics/pull/154
https://github.com/PyTorchLightning/metrics/pull/166
https://github.com/PyTorchLightning/metrics/pull/188

PyTorch-Metrics Documentation, Release 0.6.2

[0.3.0] - Changed

• Changed ExplainedVariance from storing all preds/targets to tracking 5 statistics (#68)

• Changed behaviour of confusionmatrix for multilabel data to better match
multilabel_confusion_matrix from sklearn (#134)

• Updated FBeta arguments (#111)

• Changed reset method to use detach.clone() instead of deepcopy when resetting to default (#163)

• Metrics passed as dict to MetricCollection will now always be in deterministic order (#173)

• Allowed MetricCollection pass metrics as arguments (#176)

[0.3.0] - Deprecated

• Rename argument is_multiclass -> multiclass (#162)

[0.3.0] - Removed

• Prune remaining deprecated (#92)

[0.3.0] - Fixed

• Fixed when _stable_1d_sort to work when n>=N (PL^6177)

• Fixed _computed attribute not being correctly reset (#147)

• Fixed to Blau score (#165)

• Fixed backwards compatibility for logging with older version of pytorch-lightning (#182)

2.9.11 [0.2.0] - 2021-03-12

[0.2.0] - Changed

• Decoupled PL dependency (#13)

• Refactored functional - mimic the module-like structure: classification, regression, etc. (#16)

• Refactored utilities - split to topics/submodules (#14)

• Refactored MetricCollection (#19)

[0.2.0] - Removed

• Removed deprecated metrics from PL base (#12, #15)

2.9. Changelog 195

https://github.com/PyTorchLightning/metrics/pull/68
https://github.com/PyTorchLightning/metrics/pull/134
https://github.com/PyTorchLightning/metrics/pull/111
https://github.com/PyTorchLightning/metrics/pull/163
https://github.com/PyTorchLightning/metrics/pull/173
https://github.com/PyTorchLightning/metrics/pull/176
https://github.com/PyTorchLightning/metrics/pull/162
https://github.com/PyTorchLightning/metrics/pull/92
https://github.com/PyTorchLightning/pytorch-lightning/pull/6177
https://github.com/PyTorchLightning/metrics/pull/147
https://github.com/PyTorchLightning/metrics/pull/165
https://github.com/PyTorchLightning/metrics/pull/182
https://github.com/PyTorchLightning/metrics/pull/13
https://github.com/PyTorchLightning/metrics/pull/16
https://github.com/PyTorchLightning/metrics/pull/14
https://github.com/PyTorchLightning/metrics/pull/19
https://github.com/PyTorchLightning/metrics/pull/12
https://github.com/PyTorchLightning/metrics/pull/15

PyTorch-Metrics Documentation, Release 0.6.2

2.9.12 [0.1.0] - 2021-02-22

• Added Accuracy metric now generalizes to Top-k accuracy for (multi-dimensional) multi-class inputs using the
top_k parameter (PL^4838)

• Added Accuracy metric now enables the computation of subset accuracy for multi-label or multi-dimensional
multi-class inputs with the subset_accuracy parameter (PL^4838)

• Added HammingDistance metric to compute the hamming distance (loss) (PL^4838)

• Added StatScores metric to compute the number of true positives, false positives, true negatives and false
negatives (PL^4839)

• Added R2Score metric (PL^5241)

• Added MetricCollection (PL^4318)

• Added .clone() method to metrics (PL^4318)

• Added IoU class interface (PL^4704)

• The Recall and Precision metrics (and their functional counterparts recall and precision) can now be
generalized to Recall@K and Precision@K with the use of top_k parameter (PL^4842)

• Added compositional metrics (PL^5464)

• Added AUC/AUROC class interface (PL^5479)

• Added QuantizationAwareTraining callback (PL^5706)

• Added ConfusionMatrix class interface (PL^4348)

• Added multiclass AUROC metric (PL^4236)

• Added PrecisionRecallCurve, ROC, AveragePrecision class metric (PL^4549)

• Classification metrics overhaul (PL^4837)

• Added F1 class metric (PL^4656)

• Added metrics aggregation in Horovod and fixed early stopping (PL^3775)

• Added persistent(mode) method to metrics, to enable and disable metric states being added to state_dict
(PL^4482)

• Added unification of regression metrics (PL^4166)

• Added persistent flag to Metric.add_state (PL^4195)

• Added classification metrics (PL^4043)

• Added new Metrics API. (PL^3868, PL^3921)

• Added EMB similarity (PL^3349)

• Added SSIM metrics (PL^2671)

• Added BLEU metrics (PL^2535)

196 Chapter 2. More reading

https://github.com/PyTorchLightning/pytorch-lightning/pull/4838
https://github.com/PyTorchLightning/pytorch-lightning/pull/4838
https://github.com/PyTorchLightning/pytorch-lightning/pull/4838
https://github.com/PyTorchLightning/pytorch-lightning/pull/4839
https://github.com/PyTorchLightning/pytorch-lightning/pull/5241
https://github.com/PyTorchLightning/pytorch-lightning/pull/4318
https://github.com/PyTorchLightning/pytorch-lightning/pull/4318
https://github.com/PyTorchLightning/pytorch-lightning/pull/4704
https://github.com/PyTorchLightning/pytorch-lightning/pull/4842
https://github.com/PyTorchLightning/pytorch-lightning/pull/5464
https://github.com/PyTorchLightning/pytorch-lightning/pull/5479
https://github.com/PyTorchLightning/pytorch-lightning/pull/5706
https://github.com/PyTorchLightning/pytorch-lightning/pull/4348
https://github.com/PyTorchLightning/pytorch-lightning/pull/4236
https://github.com/PyTorchLightning/pytorch-lightning/pull/4549
https://github.com/PyTorchLightning/pytorch-lightning/pull/4837
https://github.com/PyTorchLightning/pytorch-lightning/pull/4656
https://github.com/PyTorchLightning/pytorch-lightning/pull/3775
https://github.com/PyTorchLightning/pytorch-lightning/pull/4482
https://github.com/PyTorchLightning/pytorch-lightning/pull/4166
https://github.com/PyTorchLightning/pytorch-lightning/pull/4195
https://github.com/PyTorchLightning/pytorch-lightning/pull/4043
https://github.com/PyTorchLightning/pytorch-lightning/pull/3868
https://github.com/PyTorchLightning/pytorch-lightning/pull/3921
https://github.com/PyTorchLightning/pytorch-lightning/pull/3349
https://github.com/PyTorchLightning/pytorch-lightning/pull/2671
https://github.com/PyTorchLightning/pytorch-lightning/pull/2535

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

197

PyTorch-Metrics Documentation, Release 0.6.2

198 Chapter 3. Indices and tables

INDEX

A
add_state() (torchmetrics.Metric method), 16

B
bert_score() (in module torchmetrics.functional), 177

C
clone() (torchmetrics.Metric method), 17
compute() (torchmetrics.Metric method), 17
compute() (torchmetrics.PESQ method), 33

D
device (torchmetrics.Metric property), 19
double() (torchmetrics.Metric method), 17

F
float() (torchmetrics.Metric method), 17
forward() (torchmetrics.Metric method), 17

H
half() (torchmetrics.Metric method), 18

M
Metric (class in torchmetrics), 16

P
persistent() (torchmetrics.Metric method), 18
PESQ (class in torchmetrics), 32
pesq() (in module torchmetrics.functional), 124

R
reset() (torchmetrics.Metric method), 18

S
set_dtype() (torchmetrics.Metric method), 18
state_dict() (torchmetrics.Metric method), 18
sync() (torchmetrics.Metric method), 18
sync_context() (torchmetrics.Metric method), 18

T
type() (torchmetrics.Metric method), 19

U
unsync() (torchmetrics.Metric method), 19
update() (torchmetrics.Metric method), 19
update() (torchmetrics.PESQ method), 33

199

	Using TorchMetrics
	Module metrics
	Functional metrics
	Implementing a metric

	More reading
	Quick Start
	Install
	Using TorchMetrics
	Functional metrics
	Module metrics

	Implementing your own metric

	Overview
	Metrics and devices
	Metrics in Dataparallel (DP) mode
	Metrics in Distributed Data Parallel (DDP) mode

	Metrics and 16-bit precision
	Metric Arithmetics
	MetricCollection
	Module vs Functional Metrics
	Metrics and differentiability

	Implementing a Metric
	Internal implementation details
	Contributing your metric to Torchmetrics

	TorchMetrics in PyTorch Lightning
	Logging TorchMetrics

	Module metrics
	Base class
	Basic Aggregation Metrics
	CatMetric
	MaxMetric
	MeanMetric
	MinMetric
	SumMetric

	Audio Metrics
	About Audio Metrics
	PESQ
	PIT
	SI_SDR
	SI_SNR
	SNR
	STOI

	Classification Metrics
	Input types
	Using the multiclass parameter

	Accuracy
	AveragePrecision
	AUC
	AUROC
	BinnedAveragePrecision
	BinnedPrecisionRecallCurve
	BinnedRecallAtFixedPrecision
	CalibrationError
	CohenKappa
	ConfusionMatrix
	F1
	FBeta
	HammingDistance
	Hinge
	IoU
	KLDivergence
	MatthewsCorrcoef
	Precision
	PrecisionRecallCurve
	Recall
	ROC
	Specificity
	StatScores

	Image Metrics
	FID
	IS
	KID
	LPIPS
	PSNR
	SSIM

	Detection Metrics
	MAP

	Regression Metrics
	CosineSimilarity
	ExplainedVariance
	MeanAbsoluteError
	MeanAbsolutePercentageError
	MeanSquaredError
	MeanSquaredLogError
	PearsonCorrcoef
	R2Score
	SpearmanCorrcoef
	SymmetricMeanAbsolutePercentageError
	TweedieDevianceScore

	Retrieval
	Input details
	RetrievalMAP
	RetrievalMRR
	RetrievalPrecision
	RetrievalRPrecision
	RetrievalRecall
	RetrievalFallOut
	RetrievalNormalizedDCG
	RetrievalHitRate

	Text
	BERTScore
	BLEUScore
	CharErrorRate
	ROUGEScore
	SacreBLEUScore
	WER

	Wrappers
	BootStrapper
	MetricTracker
	MultioutputWrapper

	Functional metrics
	Audio Metrics
	pesq [func]
	pit [func]
	si_sdr [func]
	si_snr [func]
	snr [func]
	stoi [func]

	Classification Metrics
	accuracy [func]
	auc [func]
	auroc [func]
	average_precision [func]
	calibration_error [func]
	cohen_kappa [func]
	confusion_matrix [func]
	dice_score [func]
	f1 [func]
	fbeta [func]
	hamming_distance [func]
	hinge [func]
	iou [func]
	kl_divergence [func]
	matthews_corrcoef [func]
	roc [func]
	precision [func]
	precision_recall [func]
	precision_recall_curve [func]
	recall [func]
	select_topk [func]
	specificity [func]
	stat_scores [func]
	to_categorical [func]
	to_onehot [func]

	Image Metrics
	image_gradients [func]
	psnr [func]
	ssim [func]

	Regression Metrics
	cosine_similarity [func]
	explained_variance [func]
	mean_absolute_error [func]
	mean_absolute_percentage_error [func]
	mean_squared_error [func]
	mean_squared_log_error [func]
	pearson_corrcoef [func]
	r2_score [func]
	spearman_corrcoef [func]
	symmetric_mean_absolute_percentage_error [func]
	tweedie_deviance_score [func]

	Pairwise Metrics
	pairwise_cosine_similarity [func]
	pairwise_euclidean_distance [func]
	pairwise_linear_similarity [func]
	pairwise_manhatten_distance [func]

	Retrieval
	retrieval_average_precision [func]
	retrieval_reciprocal_rank [func]
	retrieval_precision [func]
	retrieval_r_precision [func]
	retrieval_recall [func]
	retrieval_fall_out [func]
	retrieval_normalized_dcg [func]
	retrieval_hit_rate [func]

	Text
	bert_score [func]
	bleu_score [func]
	char_error_rate [func]
	rouge_score [func]
	sacre_bleu_score [func]
	wer [func]

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Contributing
	Contribution Types
	Bug Fixes:
	New Features:
	Test cases:

	Guidelines
	Developments scripts
	Original code
	Coding Style
	Documentation
	Testing

	Changelog
	[0.6.2] - 2021-12-15
	[0.6.2] - Fixed

	[0.6.1] - 2021-12-06
	[0.6.1] - Changed
	[0.6.1] - Fixed

	[0.6.0] - 2021-10-28
	[0.6.0] - Added
	[0.6.0] - Changed
	[0.6.0] - Deprecated
	[0.6.0] - Removed
	[0.6.0] - Fixed

	[0.5.1] - 2021-08-30
	[0.5.1] - Added
	[0.5.1] - Changed
	[0.5.1] - Removed
	[0.5.1] - Fixed

	[0.5.0] - 2021-08-09
	[0.5.0] - Added
	[0.5.0] - Changed
	[0.5.0] - Deprecated
	[0.5.0] - Removed
	[0.5.0] - Fixed

	[0.4.1] - 2021-07-05
	[0.4.1] - Changed
	[0.4.1] - Fixed

	[0.4.0] - 2021-06-29
	[0.4.0] - Added
	[0.4.0] - Changed
	[0.4.0] - Deprecated
	[0.4.0] - Removed
	[0.4.0] - Fixed

	[0.3.2] - 2021-05-10
	[0.3.2] - Added
	[0.3.2] - Changed
	[0.3.2] - Removed
	[0.3.2] - Fixed

	[0.3.1] - 2021-04-21
	[0.3.0] - 2021-04-20
	[0.3.0] - Added
	[0.3.0] - Changed
	[0.3.0] - Deprecated
	[0.3.0] - Removed
	[0.3.0] - Fixed

	[0.2.0] - 2021-03-12
	[0.2.0] - Changed
	[0.2.0] - Removed

	[0.1.0] - 2021-02-22

	Indices and tables
	Index

