

Welcome to TorchMetrics

 TorchMetrics is a collection of 80+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. It offers:

	A standardized interface to increase reproducibility

	Reduces Boilerplate

	Distributed-training compatible

	Rigorously tested

	Automatic accumulation over batches

	Automatic synchronization between multiple devices

You can use TorchMetrics in any PyTorch model, or within PyTorch Lightning [https://pytorch-lightning.readthedocs.io/en/stable/] to enjoy the following additional benefits:

	Your data will always be placed on the same device as your metrics

	You can log Metric objects directly in Lightning to reduce even more boilerplate

Install TorchMetrics

 For pip users

pip install torchmetrics

Or directly from conda

conda install -c conda-forge torchmetrics

 New to TorchMetrics?

 Use this quickstart guide to learn key concepts.

 TorchMetrics with PyTorch Lightning

 Easily use TorchMetrics in your PyTorch Lightning code.

 Metrics

 View the full list of metrics and filter by task and data type.

 Overview

 A detailed overview of the TorchMetrics API and concepts.

 Custom Metrics

 Learn how to implement a custom metric with TorchMetrics.

 API Reference

 Detailed descriptions of each API package.

User Guide

	Quick Start
	Install

	Using TorchMetrics

	Implementing your own metric

	All TorchMetrics

	Structure Overview
	Metrics and devices

	Metrics and 16-bit precision

	Metric Arithmetics

	MetricCollection

	Module vs Functional Metrics

	Metrics and differentiability

	Metrics and hyperparameter optimization

	Advanced metric settings

	Implementing a Metric
	Internal implementation details

	Contributing your metric to TorchMetrics

	TorchMetrics in PyTorch Lightning
	Logging TorchMetrics

	Common Pitfalls

	Using Classification Metrics
	Input types

	Using Retrieval Metrics
	Input details

Audio

	Perceptual Evaluation of Speech Quality (PESQ)
	Module Interface

	Functional Interface

	Permutation Invariant Training (PIT)
	Module Interface

	Functional Interface

	Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)
	Module Interface

	Functional Interface

	Scale-Invariant Signal-to-Noise Ratio (SI-SNR)
	Module Interface

	Functional Interface

	Short-Time Objective Intelligibility (STOI)
	Module Interface

	Functional Interface

	Signal to Distortion Ratio (SDR)
	Module Interface

	Functional Interface

	Signal-to-Noise Ratio (SNR)
	Module Interface

	Functional Interface

Classification

	Accuracy
	Module Interface

	Functional Interface

	AUC
	Module Interface

	Functional Interface

	AUROC
	Module Interface

	Functional Interface

	Average Precision
	Module Interface

	Functional Interface

	Binned Average Precision
	Module Interface

	Binned Precision Recall Curve
	Module Interface

	Binned Recall At Fixed Precision
	Module Interface

	Calibration Error
	Module Interface

	Functional Interface

	Cohen Kappa
	Module Interface

	Functional Interface

	Confusion Matrix
	Module Interface

	Functional Interface

	Coverage Error
	Module Interface

	Functional Interface

	Dice
	Module Interface

	Functional Interface

	Dice Score
	Functional Interface (was deprecated in v0.9)

	F1 Score
	Module Interface

	Functional Interface

	FBeta Score
	Module Interface

	Functional Interface

	Hamming Distance
	Module Interface

	Functional Interface

	Hinge Loss
	Module Interface

	Functional Interface

	Jaccard Index
	Module Interface

	Functional Interface

	KL Divergence
	Module Interface

	Functional Interface

	Label Ranking Average Precision
	Module Interface

	Functional Interface

	Label Ranking Loss
	Module Interface

	Functional Interface

	Matthews Corr. Coef.
	Module Interface

	Functional Interface

	Precision
	Module Interface

	Functional Interface

	Precision Recall
	Functional Interface

	Precision Recall Curve
	Module Interface

	Functional Interface

	Recall
	Module Interface

	Functional Interface

	ROC
	Module Interface

	Functional Interface

	Specificity
	Module Interface

	Functional Interface

	Stat Scores
	Module Interface

	Functional Interface

Image

	Error Relative Global Dim. Synthesis (ERGAS)
	Module Interface

	Functional Interface

	Frechet Inception Distance (FID)
	Module Interface

	Image Gradients
	Functional Interface

	Inception Score
	Module Interface

	Kernel Inception Distance
	Module Interface

	Learned Perceptual Image Patch Similarity (LPIPS)
	Module Interface

	Multi-Scale SSIM
	Module Interface

	Functional Interface

	Peak Signal-to-Noise Ratio (PSNR)
	Module Interface

	Functional Interface

	Spectral Angle Mapper
	Module Interface

	Functional Interface

	Spectral Distortion Index
	Module Interface

	Functional Interface

	Structural Similarity Index Measure (SSIM)
	Module Interface

	Functional Interface

	Universal Image Quality Index
	Module Interface

	Functional Interface

Detection

	Mean-Average-Precision (mAP)
	Module Interface

Pairwise

	Cosine Similarity
	Functional Interface

	Euclidean Distance
	Functional Interface

	Linear Similarity
	Functional Interface

	Manhattan Distance
	Functional Interface

Regression

	Cosine Similarity
	Module Interface

	Functional Interface

	Explained Variance
	Module Interface

	Functional Interface

	Mean Absolute Error (MAE)
	Module Interface

	Functional Interface

	Mean Absolute Percentage Error (MAPE)
	Module Interface

	Functional Interface

	Mean Squared Error (MSE)
	Module Interface

	Functional Interface

	Mean Squared Log Error (MSLE)
	Module Interface

	Functional Interface

	Pearson Corr. Coef.
	Module Interface

	Functional Interface

	R2 Score
	Module Interface

	Functional Interface

	Spearman Corr. Coef.
	Module Interface

	Functional Interface

	Symmetric Mean Absolute Percentage Error (SMAPE)
	Module Interface

	Functional Interface

	Tweedie Deviance Score
	Module Interface

	Functional Interface

	Weighted MAPE
	Module Interface

	Functional Interface

Retrieval

	Retrieval Fall-Out
	Module Interface

	Functional Interface

	Retrieval Hit Rate
	Module Interface

	Functional Interface

	Retrieval Mean Average Precision (MAP)
	Module Interface

	Functional Interface

	Retrieval Mean Reciprocal Rank (MRR)
	Module Interface

	Functional Interface

	Retrieval Normalized DCG
	Module Interface

	Functional Interface

	Retrieval Precision
	Module Interface

	Functional Interface

	Precision Recall Curve
	Module Interface

	Functional Interface

	Retrieval R-Precision
	Module Interface

	Functional Interface

	Retrieval Recall
	Module Interface

	Functional Interface

Text

	BERT Score
	Module Interface

	Functional Interface

	BLEU Score
	Module Interface

	Functional Interface

	Char Error Rate
	Module Interface

	Functional Interface

	ChrF Score
	Module Interface

	Functional Interface

	Extended Edit Distance
	Module Interface

	Functional Interface

	Match Error Rate
	Module Interface

	Functional Interface

	ROUGE Score
	Module Interface

	Functional Interface

	Sacre BLEU Score
	Module Interface

	Functional Interface

	SQuAD
	Module Interface

	Functional Interface

	Translation Edit Rate (TER)
	Module Interface

	Functional Interface

	Word Error Rate
	Module Interface

	Functional Interface

	Word Info. Lost
	Module Interface

	Functional Interface

	Word Info. Preserved
	Module Interface

	Functional Interface

Aggregation

	Concatenation
	Module Interface

	Maximum
	Module Interface

	Mean
	Module Interface

	Minimum
	Module Interface

	Sum
	Module Interface

Wrappers

	Bootstrapper
	Module Interface

	Classwise Wrapper
	Module Interface

	Metric Tracker
	Module Interface

	Min / Max
	Module Interface

	Multi-output Wrapper
	Module Interface

API Reference

	torchmetrics.Metric

	torchmetrics.utilities.data
	select_topk

	to_categorical

	to_onehot

Community

	TorchMetrics Governance

	Contributor Covenant Code of Conduct

	Contributing

	Changelog

 Quick Start

Quick Start

TorchMetrics is a collection of 80+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. It offers:

	A standardized interface to increase reproducibility

	Reduces Boilerplate

	Distributed-training compatible

	Rigorously tested

	Automatic accumulation over batches

	Automatic synchronization between multiple devices

You can use TorchMetrics in any PyTorch model, or within PyTorch Lightning [https://pytorch-lightning.readthedocs.io/en/stable/] to enjoy additional features:

	This means that your data will always be placed on the same device as your metrics.

	Native support for logging metrics in Lightning to reduce even more boilerplate.

Install

You can install TorchMetrics using pip or conda:

Python Package Index (PyPI)
pip install torchmetrics
Conda
conda install -c conda-forge torchmetrics

Eventually if there is a missing PyTorch wheel for your OS or Python version you can simply compile PyTorch from source [https://github.com/pytorch/pytorch]:

Optional if you do not need compile GPU support
export USE_CUDA=0 # just to keep it simple
you can install the latest state from master
pip install git+https://github.com/pytorch/pytorch.git
OR set a particular PyTorch release
pip install git+https://github.com/pytorch/pytorch.git@<release-tag>
and finalize with installing TorchMetrics
pip install torchmetrics

Using TorchMetrics

Functional metrics

Similar to torch.nn [https://pytorch.org/docs/stable/nn], most metrics have both a class-based and a functional version.
The functional versions implement the basic operations required for computing each metric.
They are simple python functions that as input take torch.tensors [https://pytorch.org/docs/stable/tensors.html]
and return the corresponding metric as a torch.tensor.
The code-snippet below shows a simple example for calculating the accuracy using the functional interface:

import torch
import our library
import torchmetrics

simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))

acc = torchmetrics.functional.accuracy(preds, target)

Module metrics

Nearly all functional metrics have a corresponding class-based metric that calls it a functional counterpart underneath. The class-based metrics are characterized by having one or more internal metrics states (similar to the parameters of the PyTorch module) that allow them to offer additional functionalities:

	Accumulation of multiple batches

	Automatic synchronization between multiple devices

	Metric arithmetic

The code below shows how to use the class-based interface:

import torch
import our library
import torchmetrics

initialize metric
metric = torchmetrics.Accuracy()

n_batches = 10
for i in range(n_batches):
 # simulate a classification problem
 preds = torch.randn(10, 5).softmax(dim=-1)
 target = torch.randint(5, (10,))
 # metric on current batch
 acc = metric(preds, target)
 print(f"Accuracy on batch {i}: {acc}")

metric on all batches using custom accumulation
acc = metric.compute()
print(f"Accuracy on all data: {acc}")

Reseting internal state such that metric ready for new data
metric.reset()

Implementing your own metric

Implementing your own metric is as easy as subclassing a torch.nn.Module [https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module]. Simply, subclass Metric and do the following:

	Implement __init__ where you call self.add_state for every internal state that is needed for the metrics computations

	Implement update method, where all logic that is necessary for updating metric states go

	Implement compute method, where the final metric computations happens

For practical examples and more info about implementing a metric, please see this page.

Development Environment

TorchMetrics provides a Devcontainer [https://code.visualstudio.com/docs/remote/containers] configuration for Visual Studio Code [https://code.visualstudio.com/] to use a Docker container [https://www.docker.com/] as a pre-configured development environment.
This avoids struggles setting up a development environment and makes them reproducible and consistent.
Please follow the installation instructions [https://code.visualstudio.com/docs/remote/containers#_installation] and make yourself familiar with the container tutorials [https://code.visualstudio.com/docs/remote/containers-tutorial] if you want to use them.
In order to use GPUs, you can enable them within the .devcontainer/devcontainer.json file.

 All TorchMetrics

All TorchMetrics

 All

 Structure Overview

Structure Overview

TorchMetrics is a Metrics API created for easy metric development and usage in
PyTorch and PyTorch Lightning. It is rigorously tested for all edge cases and includes a growing list of
common metric implementations.

The metrics API provides update(), compute(), reset() functions to the user. The metric base class inherits
torch.nn.Module [https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module] which allows us to call metric(...) directly. The forward() method of the base Metric class
serves the dual purpose of calling update() on its input and simultaneously returning the value of the metric over the
provided input.

These metrics work with DDP in PyTorch and PyTorch Lightning by default. When .compute() is called in
distributed mode, the internal state of each metric is synced and reduced across each process, so that the
logic present in .compute() is applied to state information from all processes.

This metrics API is independent of PyTorch Lightning. Metrics can directly be used in PyTorch as shown in the example:

from torchmetrics.classification import Accuracy

train_accuracy = Accuracy()
valid_accuracy = Accuracy()

for epoch in range(epochs):
 for x, y in train_data:
 y_hat = model(x)

 # training step accuracy
 batch_acc = train_accuracy(y_hat, y)
 print(f"Accuracy of batch{i} is {batch_acc}")

 for x, y in valid_data:
 y_hat = model(x)
 valid_accuracy.update(y_hat, y)

 # total accuracy over all training batches
 total_train_accuracy = train_accuracy.compute()

 # total accuracy over all validation batches
 total_valid_accuracy = valid_accuracy.compute()

 print(f"Training acc for epoch {epoch}: {total_train_accuracy}")
 print(f"Validation acc for epoch {epoch}: {total_valid_accuracy}")

 # Reset metric states after each epoch
 train_accuracy.reset()
 valid_accuracy.reset()

Note

Metrics contain internal states that keep track of the data seen so far.
Do not mix metric states across training, validation and testing.
It is highly recommended to re-initialize the metric per mode as
shown in the examples above.

Note

Metric states are not added to the models state_dict by default.
To change this, after initializing the metric, the method .persistent(mode) can
be used to enable (mode=True) or disable (mode=False) this behaviour.

Note

Due to specialized logic around metric states, we in general do not recommend
that metrics are initialized inside other metrics (nested metrics), as this can lead
to weird behaviour. Instead consider subclassing a metric or use
torchmetrics.MetricCollection.

Metrics and devices

Metrics are simple subclasses of Module [https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module] and their metric states behave
similar to buffers and parameters of modules. This means that metrics states should
be moved to the same device as the input of the metric:

from torchmetrics import Accuracy

target = torch.tensor([1, 1, 0, 0], device=torch.device("cuda", 0))
preds = torch.tensor([0, 1, 0, 0], device=torch.device("cuda", 0))

Metric states are always initialized on cpu, and needs to be moved to
the correct device
confmat = Accuracy(num_classes=2).to(torch.device("cuda", 0))
out = confmat(preds, target)
print(out.device) # cuda:0

However, when properly defined inside a Module [https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module] or
LightningModule the metric will be automatically moved
to the same device as the module when using .to(device). Being
properly defined means that the metric is correctly identified as a child module of the
model (check .children() attribute of the model). Therefore, metrics cannot be placed
in native python list and dict, as they will not be correctly identified
as child modules. Instead of list use ModuleList [https://pytorch.org/docs/stable/generated/torch.nn.ModuleList.html#torch.nn.ModuleList] and instead of
dict use ModuleDict [https://pytorch.org/docs/stable/generated/torch.nn.ModuleDict.html#torch.nn.ModuleDict]. Furthermore, when working with multiple metrics
the native MetricCollection module can also be used to wrap multiple metrics.

from torchmetrics import Accuracy, MetricCollection

class MyModule(torch.nn.Module):
 def __init__(self):
 ...
 # valid ways metrics will be identified as child modules
 self.metric1 = Accuracy()
 self.metric2 = nn.ModuleList(Accuracy())
 self.metric3 = nn.ModuleDict({'accuracy': Accuracy()})
 self.metric4 = MetricCollection([Accuracy()]) # torchmetrics build-in collection class

 def forward(self, batch):
 data, target = batch
 preds = self(data)
 ...
 val1 = self.metric1(preds, target)
 val2 = self.metric2[0](preds, target)
 val3 = self.metric3['accuracy'](preds, target)
 val4 = self.metric4(preds, target)

You can always check which device the metric is located on using the .device property.

Metrics in Dataparallel (DP) mode

When using metrics in Dataparallel (DP) [https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html#torch.nn.DataParallel]
mode, one should be aware DP will both create and clean-up replicas of Metric objects during a single forward pass.
This has the consequence, that the metric state of the replicas will as default be destroyed before we can sync
them. It is therefore recommended, when using metrics in DP mode, to initialize them with dist_sync_on_step=True
such that metric states are synchonized between the main process and the replicas before they are destroyed.

Addtionally, if metrics are used together with a LightningModule the metric update/logging should be done
in the <mode>_step_end method (where <mode> is either training, validation or test), else
it will lead to wrong accumulation. In practice do the following:

def training_step(self, batch, batch_idx):
 data, target = batch
 preds = self(data)
 ...
 return {'loss': loss, 'preds': preds, 'target': target}

def training_step_end(self, outputs):
 #update and log
 self.metric(outputs['preds'], outputs['target'])
 self.log('metric', self.metric)

Metrics in Distributed Data Parallel (DDP) mode

When using metrics in Distributed Data Parallel (DDP) [https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html]
mode, one should be aware that DDP will add additional samples to your dataset if the size of your dataset is
not equally divisible by batch_size * num_processors. The added samples will always be replicates of datapoints
already in your dataset. This is done to secure an equal load for all processes. However, this has the consequence
that the calculated metric value will be slightly biased towards those replicated samples, leading to a wrong result.

During training and/or validation this may not be important, however it is highly recommended when evaluating
the test dataset to only run on a single gpu or use a join [https://pytorch.org/docs/stable/_modules/torch/nn/parallel/distributed.html#DistributedDataParallel.join]
context in conjunction with DDP to prevent this behaviour.

Metrics and 16-bit precision

Most metrics in our collection can be used with 16-bit precision (torch.half) tensors. However, we have found
the following limitations:

	In general pytorch had better support for 16-bit precision much earlier on GPU than CPU. Therefore, we
recommend that anyone that want to use metrics with half precision on CPU, upgrade to atleast pytorch v1.6
where support for operations such as addition, subtraction, multiplication ect. was added.

	Some metrics does not work at all in half precision on CPU. We have explicitly stated this in their docstring,
but they are also listed below:

	Peak Signal-to-Noise Ratio (PSNR)

	Structural Similarity Index Measure (SSIM)

	KL Divergence

You can always check the precision/dtype of the metric by checking the .dtype property.

Metric Arithmetics

Metrics support most of python built-in operators for arithmetic, logic and bitwise operations.

For example for a metric that should return the sum of two different metrics, implementing a new metric is an
overhead that is not necessary. It can now be done with:

first_metric = MyFirstMetric()
second_metric = MySecondMetric()

new_metric = first_metric + second_metric

new_metric.update(*args, **kwargs) now calls update of first_metric and second_metric. It forwards
all positional arguments but forwards only the keyword arguments that are available in respective metric’s update
declaration. Similarly new_metric.compute() now calls compute of first_metric and second_metric and
adds the results up. It is important to note that all implemented operations always returns a new metric object. This means
that the line first_metric == second_metric will not return a bool indicating if first_metric and second_metric
is the same metric, but will return a new metric that checks if the first_metric.compute() == second_metric.compute().

This pattern is implemented for the following operators (with a being metrics and b being metrics, tensors, integer or floats):

	Addition (a + b)

	Bitwise AND (a & b)

	Equality (a == b)

	Floordivision (a // b)

	Greater Equal (a >= b)

	Greater (a > b)

	Less Equal (a <= b)

	Less (a < b)

	Matrix Multiplication (a @ b)

	Modulo (a % b)

	Multiplication (a * b)

	Inequality (a != b)

	Bitwise OR (a | b)

	Power (a ** b)

	Subtraction (a - b)

	True Division (a / b)

	Bitwise XOR (a ^ b)

	Absolute Value (abs(a))

	Inversion (~a)

	Negative Value (neg(a))

	Positive Value (pos(a))

	Indexing (a[0])

Note

Some of these operations are only fully supported from Pytorch v1.4 and onwards, explicitly we found:
add, mul, rmatmul, rsub, rmod

MetricCollection

In many cases it is beneficial to evaluate the model output by multiple metrics.
In this case the MetricCollection class may come in handy. It accepts a sequence
of metrics and wraps these into a single callable metric class, with the same
interface as any other metric.

Example:

from torchmetrics import MetricCollection, Accuracy, Precision, Recall
target = torch.tensor([0, 2, 0, 2, 0, 1, 0, 2])
preds = torch.tensor([2, 1, 2, 0, 1, 2, 2, 2])
metric_collection = MetricCollection([
 Accuracy(),
 Precision(num_classes=3, average='macro'),
 Recall(num_classes=3, average='macro')
])
print(metric_collection(preds, target))

{'Accuracy': tensor(0.1250),
 'Precision': tensor(0.0667),
 'Recall': tensor(0.1111)}

Similarly it can also reduce the amount of code required to log multiple metrics
inside your LightningModule

from torchmetrics import Accuracy, MetricCollection, Precision, Recall

class MyModule(LightningModule):
 def __init__(self):
 metrics = MetricCollection([Accuracy(), Precision(), Recall()])
 self.train_metrics = metrics.clone(prefix='train_')
 self.valid_metrics = metrics.clone(prefix='val_')

 def training_step(self, batch, batch_idx):
 logits = self(x)
 # ...
 output = self.train_metrics(logits, y)
 # use log_dict instead of log
 # metrics are logged with keys: train_Accuracy, train_Precision and train_Recall
 self.log_dict(output)

 def validation_step(self, batch, batch_idx):
 logits = self(x)
 # ...
 output = self.valid_metrics(logits, y)
 # use log_dict instead of log
 # metrics are logged with keys: val_Accuracy, val_Precision and val_Recall
 self.log_dict(output)

Note

MetricCollection as default assumes that all the metrics in the collection
have the same call signature. If this is not the case, input that should be
given to different metrics can given as keyword arguments to the collection.

An additional advantage of using the MetricCollection object is that it will
automatically try to reduce the computations needed by finding groups of metrics
that share the same underlying metric state. If such a group of metrics is found only one
of them is actually updated and the updated state will be broadcasted to the rest
of the metrics within the group. In the example above, this will lead to a 2x-3x lower computational
cost compared to disabling this feature. However, this speedup comes with a fixed cost upfront, where
the state-groups have to be determined after the first update. This overhead can be significantly higher then gains speed-up for very
a low number of steps (approx. up to 100) but still leads to an overall speedup for everything beyond that.
In case the groups are known beforehand, these can also be set manually to avoid this extra cost of the
dynamic search. See the compute_groups argument in the class docs below for more information on this topic.

	
class torchmetrics.MetricCollection(metrics, *additional_metrics, prefix=None, postfix=None, compute_groups=True)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/collections.py#L29-L457]

	MetricCollection class can be used to chain metrics that have the same call pattern into one single class.

	Parameters

	
	metrics (Union [https://docs.python.org/3/library/typing.html#typing.Union][Metric, Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Metric], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Metric]]) – One of the following

	list or tuple (sequence): if metrics are passed in as a list or tuple, will use the metrics class name
as key for output dict. Therefore, two metrics of the same class cannot be chained this way.

	arguments: similar to passing in as a list, metrics passed in as arguments will use their metric
class name as key for the output dict.

	dict: if metrics are passed in as a dict, will use each key in the dict as key for output dict.
Use this format if you want to chain together multiple of the same metric with different parameters.
Note that the keys in the output dict will be sorted alphabetically.

	prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – a string to append in front of the keys of the output dict

	postfix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – a string to append after the keys of the output dict

	compute_groups (Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) – By default the MetricCollection will try to reduce the computations needed for the metrics in the collection
by checking if they belong to the same compute group. All metrics in a compute group share the same
metric state and are therefore only different in their compute step e.g. accuracy, precision and recall
can all be computed from the true positives/negatives and false positives/negatives. By default,
this argument is True which enables this feature. Set this argument to False for disabling
this behaviour. Can also be set to a list of lists of metrics for setting the compute groups yourself.

Note

Metric collections can be nested at initilization (see last example) but the output of the collection will
still be a single flatten dictionary combining the prefix and postfix arguments from the nested collection.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If one of the elements of metrics is not an instance of pl.metrics.Metric.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If two elements in metrics have the same name.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If metrics is not a list, tuple or a dict.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If metrics is dict and additional_metrics are passed in.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If prefix is set and it is not a string.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If postfix is set and it is not a string.

	Example (input as list):
	>>> import torch
>>> from pprint import pprint
>>> from torchmetrics import MetricCollection, Accuracy, Precision, Recall, MeanSquaredError
>>> target = torch.tensor([0, 2, 0, 2, 0, 1, 0, 2])
>>> preds = torch.tensor([2, 1, 2, 0, 1, 2, 2, 2])
>>> metrics = MetricCollection([Accuracy(),
... Precision(num_classes=3, average='macro'),
... Recall(num_classes=3, average='macro')])
>>> metrics(preds, target)
{'Accuracy': tensor(0.1250), 'Precision': tensor(0.0667), 'Recall': tensor(0.1111)}

	Example (input as arguments):
	>>> metrics = MetricCollection(Accuracy(), Precision(num_classes=3, average='macro'),
... Recall(num_classes=3, average='macro'))
>>> metrics(preds, target)
{'Accuracy': tensor(0.1250), 'Precision': tensor(0.0667), 'Recall': tensor(0.1111)}

	Example (input as dict):
	>>> metrics = MetricCollection({'micro_recall': Recall(num_classes=3, average='micro'),
... 'macro_recall': Recall(num_classes=3, average='macro')})
>>> same_metric = metrics.clone()
>>> pprint(metrics(preds, target))
{'macro_recall': tensor(0.1111), 'micro_recall': tensor(0.1250)}
>>> pprint(same_metric(preds, target))
{'macro_recall': tensor(0.1111), 'micro_recall': tensor(0.1250)}

	Example (specification of compute groups):
	>>> metrics = MetricCollection(
... Accuracy(),
... Precision(num_classes=3, average='macro'),
... MeanSquaredError(),
... compute_groups=[['Accuracy', 'Precision'], ['MeanSquaredError']]
...)
>>> pprint(metrics(preds, target))
{'Accuracy': tensor(0.1250), 'MeanSquaredError': tensor(2.3750), 'Precision': tensor(0.0667)}

	Example (nested metric collections):
	>>> metrics = MetricCollection([
... MetricCollection([
... Accuracy(num_classes=3, average='macro'),
... Precision(num_classes=3, average='macro')
...], postfix='_macro'),
... MetricCollection([
... Accuracy(num_classes=3, average='micro'),
... Precision(num_classes=3, average='micro')
...], postfix='_micro'),
...], prefix='valmetrics/')
>>> pprint(metrics(preds, target))
{'valmetrics/Accuracy_macro': tensor(0.1111),
'valmetrics/Accuracy_micro': tensor(0.1250),
'valmetrics/Precision_macro': tensor(0.0667),
'valmetrics/Precision_micro': tensor(0.1250)}

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
add_metrics(metrics, *additional_metrics)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/collections.py#L302-L363]

	Add new metrics to Metric Collection.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
clone(prefix=None, postfix=None)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/collections.py#L283-L295]

	Make a copy of the metric collection
:type _sphinx_paramlinks_torchmetrics.MetricCollection.clone.prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]
:param _sphinx_paramlinks_torchmetrics.MetricCollection.clone.prefix: a string to append in front of the metric keys
:type _sphinx_paramlinks_torchmetrics.MetricCollection.clone.postfix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]
:param _sphinx_paramlinks_torchmetrics.MetricCollection.clone.postfix: a string to append after the keys of the output dict

	Return type

	MetricCollection

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/collections.py#L269-L273]

	Compute the result for each metric in the collection.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
forward(*args, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/collections.py#L150-L159]

	Iteratively call forward for each metric.

Positional arguments (args) will be passed to every metric in the collection, while keyword arguments (kwargs)
will be filtered based on the signature of the individual metric.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
items(keep_base=False, copy_state=True)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/collections.py#L411-L422]

	Return an iterable of the ModuleDict key/value pairs.

	Parameters

	
	keep_base (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to add prefix/postfix on the collection.

	copy_state (bool [https://docs.python.org/3/library/functions.html#bool]) – If metric states should be copied between metrics in the same compute group or just passed by reference

	Return type

	Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Module]]

	
keys(keep_base=False)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/collections.py#L402-L409]

	Return an iterable of the ModuleDict key.
:type _sphinx_paramlinks_torchmetrics.MetricCollection.keys.keep_base: bool [https://docs.python.org/3/library/functions.html#bool]
:param _sphinx_paramlinks_torchmetrics.MetricCollection.keys.keep_base: Whether to add prefix/postfix on the items collection.

	Return type

	Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Hashable [https://docs.python.org/3/library/typing.html#typing.Hashable]]

	
persistent(mode=True)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/collections.py#L297-L300]

	Method for post-init to change if metric states should be saved to its state_dict.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
reset()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/collections.py#L275-L281]

	Iteratively call reset for each metric.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
update(*args, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/collections.py#L161-L189]

	Iteratively call update for each metric.

Positional arguments (args) will be passed to every metric in the collection, while keyword arguments (kwargs)
will be filtered based on the signature of the individual metric.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
values(copy_state=True)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/collections.py#L424-L432]

	Return an iterable of the ModuleDict values.

	Parameters

	copy_state (bool [https://docs.python.org/3/library/functions.html#bool]) – If metric states should be copied between metrics in the same compute group or just passed by reference

	Return type

	Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Module]

	
property compute_groups: Dict[int [https://docs.python.org/3/library/functions.html#int], List[str [https://docs.python.org/3/library/stdtypes.html#str]]][source] [https://github.com/Lightning-AI/metrics/blob/torchmetrics.py]

	Return a dict with the current compute groups in the collection.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][int [https://docs.python.org/3/library/functions.html#int], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

Module vs Functional Metrics

The functional metrics follow the simple paradigm input in, output out.
This means they don’t provide any advanced mechanisms for syncing across DDP nodes or aggregation over batches.
They simply compute the metric value based on the given inputs.

Also, the integration within other parts of PyTorch Lightning will never be as tight as with the Module-based interface.
If you look for just computing the values, the functional metrics are the way to go.
However, if you are looking for the best integration and user experience, please consider also using the Module interface.

Metrics and differentiability

Metrics support backpropagation, if all computations involved in the metric calculation
are differentiable. All modular metric classes have the property is_differentiable that determines
if a metric is differentiable or not.

However, note that the cached state is detached from the computational
graph and cannot be back-propagated. Not doing this would mean storing the computational
graph for each update call, which can lead to out-of-memory errors.
In practise this means that:

MyMetric.is_differentiable # returns True if metric is differentiable
metric = MyMetric()
val = metric(pred, target) # this value can be back-propagated
val = metric.compute() # this value cannot be back-propagated

A functional metric is differentiable if its corresponding modular metric is differentiable.

Metrics and hyperparameter optimization

If you want to directly optimize a metric it needs to support backpropagation (see section above).
However, if you are just interested in using a metric for hyperparameter tuning and are not sure
if the metric should be maximized or minimized, all modular metric classes have the higher_is_better
property that can be used to determine this:

returns True because accuracy is optimal when it is maximized
torchmetrics.Accuracy.higher_is_better

returns False because the mean squared error is optimal when it is minimized
torchmetrics.MeanSquaredError.higher_is_better

Advanced metric settings

The following is a list of additional arguments that can be given to any metric class (in the **kwargs argument)
that will alter how metric states are stored and synced.

If you are running metrics on GPU and are encountering that you are running out of GPU VRAM then the following
argument can help:

	compute_on_cpu will automatically move the metric states to cpu after calling update, making sure that
GPU memory is not filling up. The consequence will be that the compute method will be called on CPU instead
of GPU. Only applies to metric states that are lists.

If you are running in a distributed environment, TorchMetrics will automatically take care of the distributed
synchronization for you. However, the following three keyword arguments can be given to any metric class for
further control over the distributed aggregation:

	dist_sync_on_step: This argument is bool that indicates if the metric should syncronize between
different devices every time forward is called. Setting this to True is in general not recommended
as syncronization is an expensive operation to do after each batch.

	process_group: By default we syncronize across the world i.e. all proceses being computed on. You
can provide an torch._C._distributed_c10d.ProcessGroup in this argument to specify exactly what
devices should be syncronized over.

	dist_sync_fn: By default we use torch.distributed.all_gather() [https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_gather] to perform the synchronization between
devices. Provide another callable function for this argument to perform custom distributed synchronization.

 Implementing a Metric

Implementing a Metric

To implement your own custom metric, subclass the base Metric class and implement the following methods:

	__init__(): Each state variable should be called using self.add_state(...).

	update(): Any code needed to update the state given any inputs to the metric.

	compute(): Computes a final value from the state of the metric.

We provide the remaining interface, such as reset() that will make sure to correctly reset all metric
states that have been added using add_state. You should therefore not implement reset() yourself.
Additionally, adding metric states with add_state will make sure that states are correctly synchronized
in distributed settings (DDP). To see how metric states are synchronized across distributed processes,
refer to add_state() docs from the base Metric class.

Example implementation:

from torchmetrics import Metric

class MyAccuracy(Metric):
 def __init__(self):
 super().__init__()
 self.add_state("correct", default=torch.tensor(0), dist_reduce_fx="sum")
 self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")

 def update(self, preds: torch.Tensor, target: torch.Tensor):
 preds, target = self._input_format(preds, target)
 assert preds.shape == target.shape

 self.correct += torch.sum(preds == target)
 self.total += target.numel()

 def compute(self):
 return self.correct.float() / self.total

Additionally you may want to set the class properties: is_differentiable, higher_is_better and
full_state_update. Note that none of them are strictly required for the metric to work.

from torchmetrics import Metric

class MyMetric(Metric):
 # Set to True if the metric is differentiable else set to False
 is_differentiable: Optional[bool] = None

 # Set to True if the metric reaches it optimal value when the metric is maximized.
 # Set to False if it when the metric is minimized.
 higher_is_better: Optional[bool] = True

 # Set to True if the metric during 'update' requires access to the global metric
 # state for its calculations. If not, setting this to False indicates that all
 # batch states are independent and we will optimize the runtime of 'forward'
 full_state_update: bool = True

Internal implementation details

This section briefly describes how metrics work internally. We encourage looking at the source code for more info.
Internally, TorchMetrics wraps the user defined update() and compute() method. We do this to automatically
synchronize and reduce metric states across multiple devices. More precisely, calling update() does the
following internally:

	Clears computed cache.

	Calls user-defined update().

Similarly, calling compute() does the following internally:

	Syncs metric states between processes.

	Reduce gathered metric states.

	Calls the user defined compute() method on the gathered metric states.

	Cache computed result.

From a user’s standpoint this has one important side-effect: computed results are cached. This means that no
matter how many times compute is called after one and another, it will continue to return the same result.
The cache is first emptied on the next call to update.

forward serves the dual purpose of both returning the metric on the current data and updating the internal
metric state for accumulating over multiple batches. The forward() method achieves this by combining calls
to update, compute and reset. Depending on the class property full_state_update, forward
can behave in two ways:

	If full_state_update is True it indicates that the metric during update requires access to the full
metric state and we therefore need to do two calls to update to secure that the metric is calculated correctly

	Calls update() to update the global metric state (for accumulation over multiple batches)

	Caches the global state.

	Calls reset() to clear global metric state.

	Calls update() to update local metric state.

	Calls compute() to calculate metric for current batch.

	Restores the global state.

	If full_state_update is False (default) the metric state of one batch is completly independent of the state of
other batches, which means that we only need to call update once.

	Caches the global state.

	Calls reset the metric to its default state

	Calls update to update the state with local batch statistics

	Calls compute to calculate the metric for the current batch

	Reduce the global state and batch state into a single state that becomes the new global state

If implementing your own metric, we recommend trying out the metric with full_state_update class property set to
both True and False. If the results are equal, then setting it to False will usually give the best performance.

	
class torchmetrics.Metric(**kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L44-L846]

	Base class for all metrics present in the Metrics API.

Implements add_state(), forward(), reset() and a few other things to
handle distributed synchronization and per-step metric computation.

Override update() and compute() functions to implement your own metric. Use
add_state() to register metric state variables which keep track of state on each
call of update() and are synchronized across processes when compute() is called.

Note

Metric state variables can either be torch.Tensors or an empty list which can we used
to store torch.Tensors`.

Note

Different metrics only override update() and not forward(). A call to update()
is valid, but it won’t return the metric value at the current step. A call to forward()
automatically calls update() and also returns the metric value at the current step.

	Parameters

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – additional keyword arguments, see Advanced metric settings for more info.

	
	compute_on_cpu: If metric state should be stored on CPU during computations. Only works
	for list states.

	dist_sync_on_step: If metric state should synchronize on forward(). Default is False

	process_group: The process group on which the synchronization is called. Default is the world.

	
	dist_sync_fn: function that performs the allgather option on the metric state. Default is an
	custom implementation that calls torch.distributed.all_gather internally.

	sync_on_compute: If metric state should synchronize when compute is called. Default is True-

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
add_state(name, default, dist_reduce_fx=None, persistent=False)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L158-L225]

	Adds metric state variable. Only used by subclasses.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the state variable. The variable will then be accessible at self.name.

	default (Union [https://docs.python.org/3/library/typing.html#typing.Union][list [https://docs.python.org/3/library/stdtypes.html#list], Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]]) – Default value of the state; can either be a torch.Tensor or an empty list. The state will be
reset to this value when self.reset() is called.

	dist_reduce_fx (Optional) – Function to reduce state across multiple processes in distributed mode.
If value is "sum", "mean", "cat", "min" or "max" we will use torch.sum,
torch.mean, torch.cat, torch.min and torch.max` respectively, each with argument
dim=0. Note that the "cat" reduction only makes sense if the state is a list, and not
a tensor. The user can also pass a custom function in this parameter.

	persistent (Optional) – whether the state will be saved as part of the modules state_dict.
Default is False.

Note

Setting dist_reduce_fx to None will return the metric state synchronized across different processes.
However, there won’t be any reduction function applied to the synchronized metric state.

The metric states would be synced as follows

	If the metric state is torch.Tensor, the synced value will be a stacked torch.Tensor across
the process dimension if the metric state was a torch.Tensor. The original torch.Tensor metric
state retains dimension and hence the synchronized output will be of shape (num_process, ...).

	If the metric state is a list, the synced value will be a list containing the
combined elements from all processes.

Note

When passing a custom function to dist_reduce_fx, expect the synchronized metric state to follow
the format discussed in the above note.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If default is not a tensor or an empty list.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If dist_reduce_fx is not callable or one of "mean", "sum", "cat", None.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
clone()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L564-L566]

	Make a copy of the metric.

	Return type

	Metric

	
abstract compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L542-L545]

	Override this method to compute the final metric value from state variables synchronized across the
distributed backend.

	Return type

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	
double()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L603-L608]

	Method override default and prevent dtype casting.

Please use metric.set_dtype(dtype) instead.

	Return type

	Metric

	
float()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L596-L601]

	Method override default and prevent dtype casting.

Please use metric.set_dtype(dtype) instead.

	Return type

	Metric

	
forward(*args, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L227-L247]

	forward serves the dual purpose of both computing the metric on the current batch of inputs but also
add the batch statistics to the overall accumululating metric state.

Input arguments are the exact same as corresponding update method. The returned output is the exact same as
the output of compute.

	Return type

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	
half()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L610-L615]

	Method override default and prevent dtype casting.

Please use metric.set_dtype(dtype) instead.

	Return type

	Metric

	
persistent(mode=False)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L657-L660]

	Method for post-init to change if metric states should be saved to its state_dict.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
reset()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L547-L562]

	This method automatically resets the metric state variables to their default value.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
set_dtype(dst_type)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L617-L622]

	Special version of type for transferring all metric states to specific dtype
:type _sphinx_paramlinks_torchmetrics.Metric.set_dtype.dst_type: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dtype [https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype]]
:param _sphinx_paramlinks_torchmetrics.Metric.set_dtype.dst_type: the desired type
:type _sphinx_paramlinks_torchmetrics.Metric.set_dtype.dst_type: type or string

	Return type

	Metric

	
state_dict(destination=None, prefix='', keep_vars=False)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L662-L680]

	Returns a dictionary containing a whole state of the module.

Both parameters and persistent buffers (e.g. running averages) are
included. Keys are corresponding parameter and buffer names.
Parameters and buffers set to None are not included.

Warning

Currently state_dict() also accepts positional arguments for
destination, prefix and keep_vars in order. However,
this is being deprecated and keyword arguments will be enforced in
future releases.

Warning

Please avoid the use of argument destination as it is not
designed for end-users.

	Parameters

	
	destination (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If provided, the state of module will
be updated into the dict and the same object is returned.
Otherwise, an OrderedDict will be created and returned.
Default: None.

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – a prefix added to parameter and buffer
names to compose the keys in state_dict. Default: ''.

	keep_vars (bool [https://docs.python.org/3/library/functions.html#bool], optional) – by default the Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor] s
returned in the state dict are detached from autograd. If it’s
set to True, detaching will not be performed.
Default: False.

	Returns

	a dictionary containing a whole state of the module

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Example:

>>> module.state_dict().keys()
['bias', 'weight']

	
sync(dist_sync_fn=None, process_group=None, should_sync=True, distributed_available=<function jit_distributed_available>)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L416-L450]

	Sync function for manually controlling when metrics states should be synced across processes.

	Parameters

	
	dist_sync_fn (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – Function to be used to perform states synchronization

	process_group (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Specify the process group on which synchronization is called.
default: None (which selects the entire world)

	should_sync (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to apply to state synchronization. This will have an impact
only when running in a distributed setting.

	distributed_available (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – Function to determine if we are running inside a distributed setting

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
sync_context(dist_sync_fn=None, process_group=None, should_sync=True, should_unsync=True, distributed_available=<function jit_distributed_available>)[source] [https://github.com/Lightning-AI/metrics/blob/master/../../../../../../../.pyenv/versions/3.8.6/lib/python3.8/contextlib.py#L474-L506]

	Context manager to synchronize the states between processes when running in a distributed setting and
restore the local cache states after yielding.

	Parameters

	
	dist_sync_fn (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – Function to be used to perform states synchronization

	process_group (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Specify the process group on which synchronization is called.
default: None (which selects the entire world)

	should_sync (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to apply to state synchronization. This will have an impact
only when running in a distributed setting.

	should_unsync (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to restore the cache state so that the metrics can
continue to be accumulated.

	distributed_available (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – Function to determine if we are running inside a distributed setting

	Return type

	Generator [https://docs.python.org/3/library/typing.html#typing.Generator]

	
type(dst_type)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L589-L594]

	Method override default and prevent dtype casting.

Please use metric.set_dtype(dtype) instead.

	Return type

	Metric

	
unsync(should_unsync=True)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L452-L472]

	Unsync function for manually controlling when metrics states should be reverted back to their local
states.

	Parameters

	should_unsync (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to perform unsync

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract update(*_, **__)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/metric.py#L538-L540]

	Override this method to update the state variables of your metric class.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
property device: torch.device [https://pytorch.org/docs/stable/tensor_attributes.html#torch.device][source] [https://github.com/Lightning-AI/metrics/blob/torchmetrics.py]

	Return the device of the metric.

	Return type

	device [https://pytorch.org/docs/stable/tensor_attributes.html#torch.device]

Contributing your metric to TorchMetrics

Wanting to contribute the metric you have implemented? Great, we are always open to adding more metrics to torchmetrics
as long as they serve a general purpose. However, to keep all our metrics consistent we request that the implementation
and tests gets formatted in the following way:

	Start by reading our contribution guidelines [https://torchmetrics.readthedocs.io//en/latest/generated/CONTRIBUTING.html].

	First implement the functional backend. This takes cares of all the logic that goes into the metric. The code should
be put into a single file placed under torchmetrics/functional/"domain"/"new_metric".py where domain is the type of
metric (classification, regression, nlp etc) and new_metric is the name of the metric. In this file, there should be the
following three functions:

	_new_metric_update(...): everything that has to do with type/shape checking and all logic required before distributed syncing need to go here.

	_new_metric_compute(...): all remaining logic.

	new_metric(...): essentially wraps the _update and _compute private functions into one public function that
makes up the functional interface for the metric.

Note

The functional accuracy [https://github.com/Lightning-AI/metrics/blob/master/torchmetrics/functional/classification/accuracy.py]
metric is a great example of this division of logic.

	In a corresponding file placed in torchmetrics/"domain"/"new_metric".py create the module interface:

	Create a new module metric by subclassing torchmetrics.Metric.

	In the __init__ of the module call self.add_state for as many metric states are needed for the metric to
proper accumulate metric statistics.

	The module interface should essentially call the private _new_metric_update(...) in its update method and similarly the
_new_metric_compute(...) function in its compute. No logic should really be implemented in the module interface.
We do this to not have duplicate code to maintain.

Note

The module Accuracy [https://github.com/Lightning-AI/metrics/blob/master/torchmetrics/classification/accuracy.py]
metric that corresponds to the above functional example showcases these steps.

	Remember to add binding to the different relevant __init__ files.

	Testing is key to keeping torchmetrics trustworthy. This is why we have a very rigid testing protocol. This means
that we in most cases require the metric to be tested against some other common framework (sklearn, scipy etc).

	Create a testing file in tests/"domain"/test_"new_metric".py. Only one file is needed as it is intended to test
both the functional and module interface.

	In that file, start by defining a number of test inputs that your metric should be evaluated on.

	Create a testclass class NewMetric(MetricTester) that inherits from tests.helpers.testers.MetricTester.
This testclass should essentially implement the test_"new_metric"_class and test_"new_metric"_fn methods that
respectively tests the module interface and the functional interface.

	The testclass should be parameterized (using @pytest.mark.parametrize) by the different test inputs defined initially.
Additionally, the test_"new_metric"_class method should also be parameterized with an ddp parameter such that it gets
tested in a distributed setting. If your metric has additional parameters, then make sure to also parameterize these
such that different combinations of inputs and parameters gets tested.

	(optional) If your metric raises any exception, please add tests that showcase this.

Note

The test file for accuracy [https://github.com/Lightning-AI/metrics/blob/master/tests/classification/test_accuracy.py] metric
shows how to implement such tests.

If you only can figure out part of the steps, do not fear to send a PR. We will much rather receive working
metrics that are not formatted exactly like our codebase, than not receiving any. Formatting can always be applied.
We will gladly guide and/or help implement the remaining :]

 TorchMetrics in PyTorch Lightning

TorchMetrics in PyTorch Lightning

TorchMetrics was originally created as part of PyTorch Lightning [https://github.com/Lightning-AI/pytorch-lightning], a powerful deep learning research
framework designed for scaling models without boilerplate.

Note

TorchMetrics always offers compatibility with the last 2 major PyTorch Lightning versions, but we recommend to always keep both frameworks
up-to-date for the best experience.

While TorchMetrics was built to be used with native PyTorch, using TorchMetrics with Lightning offers additional benefits:

	Modular metrics are automatically placed on the correct device when properly defined inside a LightningModule.
This means that your data will always be placed on the same device as your metrics. No need to call .to(device) anymore!

	Native support for logging metrics in Lightning using
self.log [https://pytorch-lightning.readthedocs.io/en/stable/extensions/logging.html#logging-from-a-lightningmodule] inside
your LightningModule.

	The .reset() method of the metric will automatically be called at the end of an epoch.

The example below shows how to use a metric in your LightningModule [https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html]:

class MyModel(LightningModule):

 def __init__(self):
 ...
 self.accuracy = torchmetrics.Accuracy()

 def training_step(self, batch, batch_idx):
 x, y = batch
 preds = self(x)
 ...
 # log step metric
 self.accuracy(preds, y)
 self.log('train_acc_step', self.accuracy)
 ...

 def training_epoch_end(self, outs):
 # log epoch metric
 self.log('train_acc_epoch', self.accuracy)

Metric logging in Lightning happens through the self.log or self.log_dict method. Both methods only support the logging of scalar-tensors.
While the vast majority of metrics in torchmetrics returns a scalar tensor, some metrics such as ConfusionMatrix, ROC,
MeanAveragePrecision, ROUGEScore return outputs that are non-scalar tensors (often dicts or list of tensors) and should therefore be
dealt with separately. For info about the return type and shape please look at the documentation for the compute method for each metric you want to log.

Logging TorchMetrics

Logging metrics can be done in two ways: either logging the metric object directly or the computed metric values. When Metric objects, which return a scalar tensor
are logged directly in Lightning using the LightningModule self.log [https://pytorch-lightning.readthedocs.io/en/stable/extensions/logging.html#logging-from-a-lightningmodule] method,
Lightning will log the metric based on on_step and on_epoch flags present in self.log(...). If on_epoch is True, the logger automatically logs the end of epoch metric
value by calling .compute().

Note

sync_dist, sync_dist_op, sync_dist_group, reduce_fx and tbptt_reduce_fx
flags from self.log(...) don’t affect the metric logging in any manner. The metric class
contains its own distributed synchronization logic.

This however is only true for metrics that inherit the base class Metric,
and thus the functional metric API provides no support for in-built distributed synchronization
or reduction functions.

class MyModule(LightningModule):

 def __init__(self):
 ...
 self.train_acc = torchmetrics.Accuracy()
 self.valid_acc = torchmetrics.Accuracy()

 def training_step(self, batch, batch_idx):
 x, y = batch
 preds = self(x)
 ...
 self.train_acc(preds, y)
 self.log('train_acc', self.train_acc, on_step=True, on_epoch=False)

 def validation_step(self, batch, batch_idx):
 logits = self(x)
 ...
 self.valid_acc(logits, y)
 self.log('valid_acc', self.valid_acc, on_step=True, on_epoch=True)

As an alternative to logging the metric object and letting Lightning take care of when to reset the metric etc. you can also manually log the output
of the metrics.

class MyModule(LightningModule):

 def __init__(self):
 ...
 self.train_acc = torchmetrics.Accuracy()
 self.valid_acc = torchmetrics.Accuracy()

 def training_step(self, batch, batch_idx):
 x, y = batch
 preds = self(x)
 ...
 batch_value = self.train_acc(preds, y)
 self.log('train_acc_step', batch_value)

 def training_epoch_end(self, outputs):
 self.train_acc.reset()

 def validation_step(self, batch, batch_idx):
 logits = self(x)
 ...
 self.valid_acc.update(logits, y)

 def validation_epoch_end(self, outputs):
 self.log('valid_acc_epoch', self.valid_acc.compute())
 self.valid_acc.reset()

Note that logging metrics this way will require you to manually reset the metrics at the end of the epoch yourself. In general, we recommend logging
the metric object to make sure that metrics are correctly computed and reset. Additionally, we highly recommend that the two ways of logging are not
mixed as it can lead to wrong results.

Note

When using any Modular metric, calling self.metric(...) or self.metric.forward(...) serves the dual purpose of calling self.metric.update()
on its input and simultaneously returning the metric value over the provided input. So if you are logging a metric only on epoch-level (as in the
example above), it is recommended to call self.metric.update() directly to avoid the extra computation.

class MyModule(LightningModule):

 def __init__(self):
 ...
 self.valid_acc = torchmetrics.Accuracy()

 def validation_step(self, batch, batch_idx):
 logits = self(x)
 ...
 self.valid_acc.update(logits, y)
 self.log('valid_acc', self.valid_acc, on_step=True, on_epoch=True)

Common Pitfalls

The following contains a list of pitfalls to be aware of:

	If using metrics in data parallel mode (dp), the metric update/logging should be done
in the <mode>_step_end method (where <mode> is either training, validation
or test). This is because dp split the batches during the forward pass and metric states are destroyed after each forward pass, thus leading to wrong accumulation. In practice do the following:

class MyModule(LightningModule):

 def training_step(self, batch, batch_idx):
 data, target = batch
 preds = self(data)
 # ...
 return {'loss': loss, 'preds': preds, 'target': target}

 def training_step_end(self, outputs):
 # update and log
 self.metric(outputs['preds'], outputs['target'])
 self.log('metric', self.metric)

	Modular metrics contain internal states that should belong to only one DataLoader. In case you are using multiple DataLoaders,
it is recommended to initialize a separate modular metric instances for each DataLoader and use them separately. The same holds
for using seperate metrics for training, validation and testing.

class MyModule(LightningModule):

 def __init__(self):
 ...
 self.val_acc = nn.ModuleList([torchmetrics.Accuracy() for _ in range(2)])

 def val_dataloader(self):
 return [DataLoader(...), DataLoader(...)]

 def validation_step(self, batch, batch_idx, dataloader_idx):
 x, y = batch
 preds = self(x)
 ...
 self.val_acc[dataloader_idx](preds, y)
 self.log('val_acc', self.val_acc[dataloader_idx])

	Mixing the two logging methods by calling self.log("val", self.metric) in {training}/{val}/{test}_step method and
then calling self.log("val", self.metric.compute()) in the corresponding {training}/{val}/{test}_epoch_end method.
Because the object is logged in the first case, Lightning will reset the metric before calling the second line leading to
errors or nonsense results.

	Calling self.log("val", self.metric(preds, target)) with the intention of logging the metric object. Because
self.metric(preds, target) corresponds to calling the forward method, this will return a tensor and not the
metric object. Such logging will be wrong in this case. Instead it is important to seperate into seperate lines:

def training_step(self, batch, batch_idx):
 x, y = batch
 preds = self(x)
 ...
 # log step metric
 self.accuracy(preds, y) # compute metrics
 self.log('train_acc_step', self.accuracy) # log metric object

 Using Classification Metrics

Using Classification Metrics

Input types

For the purposes of classification metrics, inputs (predictions and targets) are split
into these categories (N stands for the batch size and C for number of classes):

*dtype binary means integers that are either 0 or 1

	Type

	preds shape

	preds dtype

	target shape

	target dtype

	Binary

	(N,)

	float

	(N,)

	binary*

	Multi-class

	(N,)

	int

	(N,)

	int

	Multi-class with logits or probabilities

	(N, C)

	float

	(N,)

	int

	Multi-label

	(N, …)

	float

	(N, …)

	binary*

	Multi-dimensional multi-class

	(N, …)

	int

	(N, …)

	int

	Multi-dimensional multi-class with logits or probabilities

	(N, C, …)

	float

	(N, …)

	int

Note

All dimensions of size 1 (except N) are “squeezed out” at the beginning, so
that, for example, a tensor of shape (N, 1) is treated as (N,).

When predictions or targets are integers, it is assumed that class labels start at 0, i.e.
the possible class labels are 0, 1, 2, 3, etc. Below are some examples of different input types

Binary inputs
binary_preds = torch.tensor([0.6, 0.1, 0.9])
binary_target = torch.tensor([1, 0, 2])

Multi-class inputs
mc_preds = torch.tensor([0, 2, 1])
mc_target = torch.tensor([0, 1, 2])

Multi-class inputs with probabilities
mc_preds_probs = torch.tensor([[0.8, 0.2, 0], [0.1, 0.2, 0.7], [0.3, 0.6, 0.1]])
mc_target_probs = torch.tensor([0, 1, 2])

Multi-label inputs
ml_preds = torch.tensor([[0.2, 0.8, 0.9], [0.5, 0.6, 0.1], [0.3, 0.1, 0.1]])
ml_target = torch.tensor([[0, 1, 1], [1, 0, 0], [0, 0, 0]])

Using the multiclass parameter

In some cases, you might have inputs which appear to be (multi-dimensional) multi-class
but are actually binary/multi-label - for example, if both predictions and targets are
integer (binary) tensors. Or it could be the other way around, you want to treat
binary/multi-label inputs as 2-class (multi-dimensional) multi-class inputs.

For these cases, the metrics where this distinction would make a difference, expose the
multiclass argument. Let’s see how this is used on the example of
StatScores metric.

First, let’s consider the case with label predictions with 2 classes, which we want to
treat as binary.

from torchmetrics.functional import stat_scores

These inputs are supposed to be binary, but appear as multi-class
preds = torch.tensor([0, 1, 0])
target = torch.tensor([1, 1, 0])

As you can see below, by default the inputs are treated
as multi-class. We can set multiclass=False to treat the inputs as binary -
which is the same as converting the predictions to float beforehand.

>>> stat_scores(preds, target, reduce='macro', num_classes=2)
tensor([[1, 1, 1, 0, 1],
 [1, 0, 1, 1, 2]])
>>> stat_scores(preds, target, reduce='macro', num_classes=1, multiclass=False)
tensor([[1, 0, 1, 1, 2]])
>>> stat_scores(preds.float(), target, reduce='macro', num_classes=1)
tensor([[1, 0, 1, 1, 2]])

Next, consider the opposite example: inputs are binary (as predictions are probabilities),
but we would like to treat them as 2-class multi-class, to obtain the metric for both classes.

preds = torch.tensor([0.2, 0.7, 0.3])
target = torch.tensor([1, 1, 0])

In this case we can set multiclass=True, to treat the inputs as multi-class.

>>> stat_scores(preds, target, reduce='macro', num_classes=1)
tensor([[1, 0, 1, 1, 2]])
>>> stat_scores(preds, target, reduce='macro', num_classes=2, multiclass=True)
tensor([[1, 1, 1, 0, 1],
 [1, 0, 1, 1, 2]])

 Using Retrieval Metrics

Using Retrieval Metrics

Input details

For the purposes of retrieval metrics, inputs (indexes, predictions and targets) must have the same size
(N stands for the batch size) and the following types:

	indexes shape

	indexes dtype

	preds shape

	preds dtype

	target shape

	target dtype

	(N,…)

	long

	(N,…)

	float

	(N,…)

	long or bool

Note

All dimensions are flattened at the beginning, so
that, for example, a tensor of shape (N, M) is treated as (N * M,).

In Information Retrieval you have a query that is compared with a variable number of documents. For each pair (Q_i, D_j),
a score is computed that measures the relevance of document D w.r.t. query Q. Documents are then sorted by score
and you hope that relevant documents are scored higher. target contains the labels for the documents (relevant or not).

Since a query may be compared with a variable number of documents, we use indexes to keep track of which scores belong to
the set of pairs (Q_i, D_j) having the same query Q_i.

Note

Retrieval metrics are only intended to be used globally. This means that the average of the metric over each batch can be quite different
from the metric computed on the whole dataset. For this reason, we suggest to compute the metric only when all the examples
has been provided to the metric. When using Pytorch Lightning, we suggest to use on_step=False
and on_epoch=True in self.log or to place the metric calculation in training_epoch_end, validation_epoch_end or test_epoch_end.

>>> from torchmetrics import RetrievalMAP
>>> # functional version works on a single query at a time
>>> from torchmetrics.functional import retrieval_average_precision

>>> # the first query was compared with two documents, the second with three
>>> indexes = torch.tensor([0, 0, 1, 1, 1])
>>> preds = torch.tensor([0.8, -0.4, 1.0, 1.4, 0.0])
>>> target = torch.tensor([0, 1, 0, 1, 1])

>>> rmap = RetrievalMAP() # or some other retrieval metric
>>> rmap(preds, target, indexes=indexes)
tensor(0.6667)

>>> # the previous instruction is roughly equivalent to
>>> res = []
>>> # iterate over indexes of first and second query
>>> for indexes in ([0, 1], [2, 3, 4]):
... res.append(retrieval_average_precision(preds[indexes], target[indexes]))
>>> torch.stack(res).mean()
tensor(0.6667)

 Perceptual Evaluation of Speech Quality (PESQ)

Perceptual Evaluation of Speech Quality (PESQ)

Module Interface

	
class torchmetrics.audio.pesq.PerceptualEvaluationSpeechQuality(fs, mode, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/pesq.py#L25-L117]

	Perceptual Evaluation of Speech Quality (PESQ)

This is a wrapper for the pesq package [1]. Note that input will be moved to cpu
to perform the metric calculation.

Note

using this metrics requires you to have pesq install. Either install as pip install
torchmetrics[audio] or pip install pesq. Note that pesq will compile with your currently
installed version of numpy, meaning that if you upgrade numpy at some point in the future you will
most likely have to reinstall pesq.

Forward accepts

	preds: shape [...,time]

	target: shape [...,time]

	Parameters

	
	fs (int [https://docs.python.org/3/library/functions.html#int]) – sampling frequency, should be 16000 or 8000 (Hz)

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – 'wb' (wide-band) or 'nb' (narrow-band)

	keep_same_device – whether to move the pesq value to the device of preds

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	
	ModuleNotFoundError [https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError] – If peqs package is not installed

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If fs is not either 8000 or 16000

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If mode is not either "wb" or "nb"

Example

>>> from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality
>>> import torch
>>> g = torch.manual_seed(1)
>>> preds = torch.randn(8000)
>>> target = torch.randn(8000)
>>> nb_pesq = PerceptualEvaluationSpeechQuality(8000, 'nb')
>>> nb_pesq(preds, target)
tensor(2.2076)
>>> wb_pesq = PerceptualEvaluationSpeechQuality(16000, 'wb')
>>> wb_pesq(preds, target)
tensor(1.7359)

References

[1] https://github.com/ludlows/python-pesq

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/pesq.py#L115-L117]

	Computes average PESQ.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/pesq.py#L101-L113]

	Update state with predictions and targets.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.audio.pesq.perceptual_evaluation_speech_quality(preds, target, fs, mode, keep_same_device=False)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/audio/pesq.py#L30-L101]

	PESQ (Perceptual Evaluation of Speech Quality)

This is a wrapper for the pesq package [1]. Note that input will be moved to cpu
to perform the metric calculation.

Note

using this metrics requires you to have pesq install. Either install as pip install
torchmetrics[audio] or pip install pesq. Note that pesq will compile with your currently
installed version of numpy, meaning that if you upgrade numpy at some point in the future you will
most likely have to reinstall pesq.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [...,time]

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [...,time]

	fs (int [https://docs.python.org/3/library/functions.html#int]) – sampling frequency, should be 16000 or 8000 (Hz)

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – 'wb' (wide-band) or 'nb' (narrow-band)

	keep_same_device (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to move the pesq value to the device of preds

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	pesq value of shape […]

	Raises

	
	ModuleNotFoundError [https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError] – If peqs package is not installed

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If fs is not either 8000 or 16000

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If mode is not either "wb" or "nb"

Example

>>> from torchmetrics.functional.audio.pesq import perceptual_evaluation_speech_quality
>>> import torch
>>> g = torch.manual_seed(1)
>>> preds = torch.randn(8000)
>>> target = torch.randn(8000)
>>> perceptual_evaluation_speech_quality(preds, target, 8000, 'nb')
tensor(2.2076)
>>> perceptual_evaluation_speech_quality(preds, target, 16000, 'wb')
tensor(1.7359)

References

[1] https://github.com/ludlows/python-pesq

 Permutation Invariant Training (PIT)

Permutation Invariant Training (PIT)

Module Interface

	
class torchmetrics.PermutationInvariantTraining(metric_func, eval_func='max', **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/pit.py#L22-L102]

	Permutation invariant training (PermutationInvariantTraining). The PermutationInvariantTraining implements
the famous Permutation Invariant Training method.

[1] in speech separation field in order to calculate audio metrics in a permutation invariant way.

Forward accepts

	preds: shape [batch, spk, ...]

	target: shape [batch, spk, ...]

	Parameters

	
	metric_func (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – a metric function accept a batch of target and estimate,
i.e. metric_func(preds[:, i, ...], target[:, j, ...]), and returns a batch of metric tensors [batch]

	eval_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – the function to find the best permutation, can be ‘min’ or ‘max’, i.e. the smaller the better
or the larger the better.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments for either the metric_func or distributed communication,
see Advanced metric settings for more info.

	Returns

	average PermutationInvariantTraining metric

Example

>>> import torch
>>> from torchmetrics import PermutationInvariantTraining
>>> from torchmetrics.functional import scale_invariant_signal_noise_ratio
>>> _ = torch.manual_seed(42)
>>> preds = torch.randn(3, 2, 5) # [batch, spk, time]
>>> target = torch.randn(3, 2, 5) # [batch, spk, time]
>>> pit = PermutationInvariantTraining(scale_invariant_signal_noise_ratio, 'max')
>>> pit(preds, target)
tensor(-2.1065)

	Reference:
	[1] D. Yu, M. Kolbaek, Z.-H. Tan, J. Jensen, Permutation invariant training of deep models for
speaker-independent multi-talker speech separation, in: 2017 IEEE Int. Conf. Acoust. Speech
Signal Process. ICASSP, IEEE, New Orleans, LA, 2017: pp. 241–245. https://doi.org/10.1109/ICASSP.2017.7952154.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/pit.py#L100-L102]

	Computes average PermutationInvariantTraining metric.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/pit.py#L88-L98]

	Update state with predictions and targets.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.permutation_invariant_training(preds, target, metric_func, eval_func='max', **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/audio/pit.py#L95-L167]

	Permutation invariant training (PIT). The permutation_invariant_training implements the famous
Permutation Invariant Training method.

[1] in speech separation field in order to calculate audio metrics in a permutation invariant way.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [batch, spk, ...]

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [batch, spk, ...]

	metric_func (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – a metric function accept a batch of target and estimate,
i.e. metric_func(preds[:, i, ...], target[:, j, ...]), and returns a batch of metric tensors [batch]

	eval_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – the function to find the best permutation, can be 'min' or 'max',
i.e. the smaller the better or the larger the better.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional args for metric_func

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]]

	Returns

	best_metric of shape [batch]
best_perm of shape [batch]

Example

>>> from torchmetrics.functional.audio import scale_invariant_signal_distortion_ratio
>>> # [batch, spk, time]
>>> preds = torch.tensor([[[-0.0579, 0.3560, -0.9604], [-0.1719, 0.3205, 0.2951]]])
>>> target = torch.tensor([[[1.0958, -0.1648, 0.5228], [-0.4100, 1.1942, -0.5103]]])
>>> best_metric, best_perm = permutation_invariant_training(
... preds, target, scale_invariant_signal_distortion_ratio, 'max')
>>> best_metric
tensor([-5.1091])
>>> best_perm
tensor([[0, 1]])
>>> pit_permutate(preds, best_perm)
tensor([[[-0.0579, 0.3560, -0.9604],
 [-0.1719, 0.3205, 0.2951]]])

	Reference:
	[1] Permutation Invariant Training of Deep Models [https://ieeexplore.ieee.org/document/7952154]

 Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)

Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)

Module Interface

	
class torchmetrics.ScaleInvariantSignalDistortionRatio(zero_mean=False, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/sdr.py#L122-L187]

	Scale-invariant signal-to-distortion ratio (SI-SDR). The SI-SDR value is in general considered an overall
measure of how good a source sound.

Forward accepts

	preds: shape [...,time]

	target: shape [...,time]

	Parameters

	
	zero_mean (bool [https://docs.python.org/3/library/functions.html#bool]) – if to zero mean target and preds or not

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if target and preds have a different shape

	Returns

	average si-sdr value

Example

>>> import torch
>>> from torchmetrics import ScaleInvariantSignalDistortionRatio
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> si_sdr = ScaleInvariantSignalDistortionRatio()
>>> si_sdr(preds, target)
tensor(18.4030)

References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) 2019.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/sdr.py#L185-L187]

	Computes average SI-SDR.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/sdr.py#L173-L183]

	Update state with predictions and targets.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.scale_invariant_signal_distortion_ratio(preds, target, zero_mean=False)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/audio/sdr.py#L239-L279]

	Calculates Scale-invariant signal-to-distortion ratio (SI-SDR) metric. The SI-SDR value is in general
considered an overall measure of how good a source sound.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [...,time]

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [...,time]

	zero_mean (bool [https://docs.python.org/3/library/functions.html#bool]) – If to zero mean target and preds or not

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	si-sdr value of shape […]

Example

>>> from torchmetrics.functional.audio import scale_invariant_signal_distortion_ratio
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> scale_invariant_signal_distortion_ratio(preds, target)
tensor(18.4030)

References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) 2019.

 Scale-Invariant Signal-to-Noise Ratio (SI-SNR)

Scale-Invariant Signal-to-Noise Ratio (SI-SNR)

Module Interface

	
class torchmetrics.ScaleInvariantSignalNoiseRatio(**kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/snr.py#L97-L158]

	Scale-invariant signal-to-noise ratio (SI-SNR).

Forward accepts

	preds: shape [...,time]

	target: shape [...,time]

	Parameters

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if target and preds have a different shape

	Returns

	average si-snr value

Example

>>> import torch
>>> from torchmetrics import ScaleInvariantSignalNoiseRatio
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> si_snr = ScaleInvariantSignalNoiseRatio()
>>> si_snr(preds, target)
tensor(15.0918)

References

[1] Y. Luo and N. Mesgarani, “TaSNet: Time-Domain Audio Separation Network for Real-Time, Single-Channel Speech
Separation,” 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp.
696-700, doi: 10.1109/ICASSP.2018.8462116.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/snr.py#L156-L158]

	Computes average SI-SNR.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/snr.py#L144-L154]

	Update state with predictions and targets.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.scale_invariant_signal_noise_ratio(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/audio/snr.py#L67-L90]

	Scale-invariant signal-to-noise ratio (SI-SNR).

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [...,time]

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [...,time]

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	si-snr value of shape […]

Example

>>> import torch
>>> from torchmetrics.functional.audio import scale_invariant_signal_noise_ratio
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> scale_invariant_signal_noise_ratio(preds, target)
tensor(15.0918)

References

[1] Y. Luo and N. Mesgarani, “TaSNet: Time-Domain Audio Separation Network for Real-Time, Single-Channel Speech
Separation,” 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp.
696-700, doi: 10.1109/ICASSP.2018.8462116.

 Short-Time Objective Intelligibility (STOI)

Short-Time Objective Intelligibility (STOI)

Module Interface

	
class torchmetrics.audio.stoi.ShortTimeObjectiveIntelligibility(fs, extended=False, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/stoi.py#L25-L120]

	STOI (Short-Time Objective Intelligibility, see [2,3]), a wrapper for the pystoi package [1].
Note that input will be moved to cpu to perform the metric calculation.

Intelligibility measure which is highly correlated with the intelligibility of degraded speech signals, e.g., due
to additive noise, single-/multi-channel noise reduction, binary masking and vocoded speech as in CI simulations.
The STOI-measure is intrusive, i.e., a function of the clean and degraded speech signals. STOI may be a good
alternative to the speech intelligibility index (SII) or the speech transmission index (STI), when you are
interested in the effect of nonlinear processing to noisy speech, e.g., noise reduction, binary masking algorithms,
on speech intelligibility. Description taken from Cees Taal’s website [http://www.ceestaal.nl/code/].

Note

using this metrics requires you to have pystoi install. Either install as pip install
torchmetrics[audio] or pip install pystoi

Forward accepts

	preds: shape [...,time]

	target: shape [...,time]

	Parameters

	
	fs (int [https://docs.python.org/3/library/functions.html#int]) – sampling frequency (Hz)

	extended (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to use the extended STOI described in [4]

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Returns

	average STOI value

	Raises

	ModuleNotFoundError [https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError] – If pystoi package is not installed

Example

>>> from torchmetrics.audio.stoi import ShortTimeObjectiveIntelligibility
>>> import torch
>>> g = torch.manual_seed(1)
>>> preds = torch.randn(8000)
>>> target = torch.randn(8000)
>>> stoi = ShortTimeObjectiveIntelligibility(8000, False)
>>> stoi(preds, target)
tensor(-0.0100)

References

[1] https://github.com/mpariente/pystoi

[2] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen ‘A Short-Time Objective Intelligibility Measure for
Time-Frequency Weighted Noisy Speech’, ICASSP 2010, Texas, Dallas.

[3] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen ‘An Algorithm for Intelligibility Prediction of
Time-Frequency Weighted Noisy Speech’, IEEE Transactions on Audio, Speech, and Language Processing, 2011.

[4] J. Jensen and C. H. Taal, ‘An Algorithm for Predicting the Intelligibility of Speech Masked by Modulated
Noise Maskers’, IEEE Transactions on Audio, Speech and Language Processing, 2016.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/stoi.py#L118-L120]

	Computes average STOI.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/stoi.py#L104-L116]

	Update state with predictions and targets.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.audio.stoi.short_time_objective_intelligibility(preds, target, fs, extended=False, keep_same_device=False)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/audio/stoi.py#L28-L102]

	STOI (Short-Time Objective Intelligibility, see [2,3]), a wrapper for the pystoi package [1].
Note that input will be moved to cpu to perform the metric calculation.

Intelligibility measure which is highly correlated with the intelligibility of degraded speech signals, e.g., due
to additive noise, single/multi-channel noise reduction, binary masking and vocoded speech as in CI simulations.
The STOI-measure is intrusive, i.e., a function of the clean and degraded speech signals. STOI may be a good
alternative to the speech intelligibility index (SII) or the speech transmission index (STI), when you are
interested in the effect of nonlinear processing to noisy speech, e.g., noise reduction, binary masking algorithms,
on speech intelligibility. Description taken from Cees Taal’s website [http://www.ceestaal.nl/code/].

Note

using this metrics requires you to have pystoi install. Either install as pip install
torchmetrics[audio] or pip install pystoi

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [..., time]

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [..., time]

	fs (int [https://docs.python.org/3/library/functions.html#int]) – sampling frequency (Hz)

	extended (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to use the extended STOI described in [4]

	keep_same_device (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to move the stoi value to the device of preds

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	stoi value of shape […]

	Raises

	ModuleNotFoundError [https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError] – If pystoi package is not installed

Example

>>> from torchmetrics.functional.audio.stoi import short_time_objective_intelligibility
>>> import torch
>>> g = torch.manual_seed(1)
>>> preds = torch.randn(8000)
>>> target = torch.randn(8000)
>>> short_time_objective_intelligibility(preds, target, 8000).float()
tensor(-0.0100)

References

[1] https://github.com/mpariente/pystoi

[2] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen ‘A Short-Time Objective Intelligibility Measure for
Time-Frequency Weighted Noisy Speech’, ICASSP 2010, Texas, Dallas.

[3] C.H.Taal, R.C.Hendriks, R.Heusdens, J.Jensen ‘An Algorithm for Intelligibility Prediction of
Time-Frequency Weighted Noisy Speech’, IEEE Transactions on Audio, Speech, and Language Processing, 2011.

[4] J. Jensen and C. H. Taal, ‘An Algorithm for Predicting the Intelligibility of Speech Masked by Modulated
Noise Maskers’, IEEE Transactions on Audio, Speech and Language Processing, 2016.

 Signal to Distortion Ratio (SDR)

Signal to Distortion Ratio (SDR)

Module Interface

	
class torchmetrics.SignalDistortionRatio(use_cg_iter=None, filter_length=512, zero_mean=False, load_diag=None, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/sdr.py#L24-L119]

	Signal to Distortion Ratio (SDR) [1,2]

Forward accepts

	preds: shape [..., time]

	target: shape [..., time]

	Parameters

	
	use_cg_iter (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – If provided, conjugate gradient descent is used to solve for the distortion
filter coefficients instead of direct Gaussian elimination, which requires that
fast-bss-eval is installed and pytorch version >= 1.8.
This can speed up the computation of the metrics in case the filters
are long. Using a value of 10 here has been shown to provide
good accuracy in most cases and is sufficient when using this
loss to train neural separation networks.

	filter_length (int [https://docs.python.org/3/library/functions.html#int]) – The length of the distortion filter allowed

	zero_mean (bool [https://docs.python.org/3/library/functions.html#bool]) – When set to True, the mean of all signals is subtracted prior to computation of the metrics

	load_diag (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – If provided, this small value is added to the diagonal coefficients of the system metrics when solving
for the filter coefficients. This can help stabilize the metric in the case where some reference
signals may sometimes be zero

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> from torchmetrics.audio import SignalDistortionRatio
>>> import torch
>>> g = torch.manual_seed(1)
>>> preds = torch.randn(8000)
>>> target = torch.randn(8000)
>>> sdr = SignalDistortionRatio()
>>> sdr(preds, target)
tensor(-12.0589)
>>> # use with pit
>>> from torchmetrics.audio import PermutationInvariantTraining
>>> from torchmetrics.functional.audio import signal_distortion_ratio
>>> preds = torch.randn(4, 2, 8000) # [batch, spk, time]
>>> target = torch.randn(4, 2, 8000)
>>> pit = PermutationInvariantTraining(signal_distortion_ratio, 'max')
>>> pit(preds, target)
tensor(-11.6051)

References

[1] Vincent, E., Gribonval, R., & Fevotte, C. (2006). Performance measurement in blind audio source separation.
IEEE Transactions on Audio, Speech and Language Processing, 14(4), 1462–1469.

[2] Scheibler, R. (2021). SDR – Medium Rare with Fast Computations.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/sdr.py#L117-L119]

	Computes average SDR.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/sdr.py#L103-L115]

	Update state with predictions and targets.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.signal_distortion_ratio(preds, target, use_cg_iter=None, filter_length=512, zero_mean=False, load_diag=None)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/audio/sdr.py#L118-L236]

	Signal to Distortion Ratio (SDR) [1,2]

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [..., time]

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [..., time]

	use_cg_iter (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – If provided, conjugate gradient descent is used to solve for the distortion
filter coefficients instead of direct Gaussian elimination, which requires that
fast-bss-eval is installed and pytorch version >= 1.8.
This can speed up the computation of the metrics in case the filters
are long. Using a value of 10 here has been shown to provide
good accuracy in most cases and is sufficient when using this
loss to train neural separation networks.

	filter_length (int [https://docs.python.org/3/library/functions.html#int]) – The length of the distortion filter allowed

	zero_mean (bool [https://docs.python.org/3/library/functions.html#bool]) – When set to True, the mean of all signals is subtracted prior to computation of the metrics

	load_diag (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – If provided, this small value is added to the diagonal coefficients of
the system metrics when solving for the filter coefficients.
This can help stabilize the metric in the case where some reference signals may sometimes be zero

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	sdr value of shape [...]

Example

>>> from torchmetrics.functional.audio import signal_distortion_ratio
>>> import torch
>>> g = torch.manual_seed(1)
>>> preds = torch.randn(8000)
>>> target = torch.randn(8000)
>>> signal_distortion_ratio(preds, target)
tensor(-12.0589)
>>> # use with permutation_invariant_training
>>> from torchmetrics.functional.audio import permutation_invariant_training
>>> preds = torch.randn(4, 2, 8000) # [batch, spk, time]
>>> target = torch.randn(4, 2, 8000)
>>> best_metric, best_perm = permutation_invariant_training(preds, target, signal_distortion_ratio, 'max')
>>> best_metric
tensor([-11.6375, -11.4358, -11.7148, -11.6325])
>>> best_perm
tensor([[1, 0],
 [0, 1],
 [1, 0],
 [0, 1]])

References

[1] Vincent, E., Gribonval, R., & Fevotte, C. (2006). Performance measurement in blind audio source separation.
IEEE Transactions on Audio, Speech and Language Processing, 14(4), 1462–1469.

[2] Scheibler, R. (2021). SDR – Medium Rare with Fast Computations.

 Signal-to-Noise Ratio (SNR)

Signal-to-Noise Ratio (SNR)

Module Interface

	
class torchmetrics.SignalNoiseRatio(zero_mean=False, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/snr.py#L22-L94]

	Signal-to-noise ratio (SNR [https://en.wikipedia.org/wiki/Signal-to-noise_ratio]):

[image: \text{SNR} = \frac{P_{signal}}{P_{noise}}]

where [image: P] denotes the power of each signal. The SNR metric compares the level
of the desired signal to the level of background noise. Therefore, a high value of
SNR means that the audio is clear.

Forward accepts

	preds: shape [..., time]

	target: shape [..., time]

	Parameters

	
	zero_mean (bool [https://docs.python.org/3/library/functions.html#bool]) – if to zero mean target and preds or not

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if target and preds have a different shape

	Returns

	average snr value

Example

>>> import torch
>>> from torchmetrics import SignalNoiseRatio
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> snr = SignalNoiseRatio()
>>> snr(preds, target)
tensor(16.1805)

References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) 2019.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/snr.py#L92-L94]

	Computes average SNR.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/audio/snr.py#L80-L90]

	Update state with predictions and targets.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.signal_noise_ratio(preds, target, zero_mean=False)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/audio/snr.py#L22-L64]

	Signal-to-noise ratio (SNR [https://en.wikipedia.org/wiki/Signal-to-noise_ratio]):

[image: \text{SNR} = \frac{P_{signal}}{P_{noise}}]

where [image: P] denotes the power of each signal. The SNR metric compares the level
of the desired signal to the level of background noise. Therefore, a high value of
SNR means that the audio is clear.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [...,time]

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – shape [...,time]

	zero_mean (bool [https://docs.python.org/3/library/functions.html#bool]) – if to zero mean target and preds or not

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	snr value of shape […]

Example

>>> from torchmetrics.functional.audio import signal_noise_ratio
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
>>> signal_noise_ratio(preds, target)
tensor(16.1805)

References

[1] Le Roux, Jonathan, et al. “SDR half-baked or well done.” IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) 2019.

 Accuracy

Accuracy

Module Interface

	
class torchmetrics.Accuracy(threshold=0.5, num_classes=None, average='micro', mdmc_average=None, ignore_index=None, top_k=None, multiclass=None, subset_accuracy=False, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/accuracy.py#L31-L270]

	Computes Accuracy:

[image: \text{Accuracy} = \frac{1}{N}\sum_i^N 1(y_i = \hat{y}_i)]

Where [image: y] is a tensor of target values, and [image: \hat{y}] is a
tensor of predictions.

For multi-class and multi-dimensional multi-class data with probability or logits predictions, the
parameter top_k generalizes this metric to a Top-K accuracy metric: for each sample the
top-K highest probability or logit score items are considered to find the correct label.

For multi-label and multi-dimensional multi-class inputs, this metric computes the “global”
accuracy by default, which counts all labels or sub-samples separately. This can be
changed to subset accuracy (which requires all labels or sub-samples in the sample to
be correctly predicted) by setting subset_accuracy=True.

Accepts all input types listed in Input types.

	Parameters

	
	num_classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of classes. Necessary for 'macro', 'weighted' and None average methods.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines the reduction that is applied. Should be one of the following:

	'micro' [default]: Calculate the metric globally, across all samples and classes.

	'macro': Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).

	'weighted': Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support (tp + fn).

	'none' or None: Calculate the metric for each class separately, and return
the metric for every class.

	'samples': Calculate the metric for each sample, and average the metrics
across samples (with equal weights for each sample).

Note

What is considered a sample in the multi-dimensional multi-class case
depends on the value of mdmc_average.

Note

If 'none' and a given class doesn’t occur in the preds or target,
the value for the class will be nan.

	mdmc_average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines how averaging is done for multi-dimensional multi-class inputs (on top of the
average parameter). Should be one of the following:

	None [default]: Should be left unchanged if your data is not multi-dimensional
multi-class.

	'samplewise': In this case, the statistics are computed separately for each
sample on the N axis, and then averaged over samples.
The computation for each sample is done by treating the flattened extra axes ...
(see Input types) as the N dimension within the sample,
and computing the metric for the sample based on that.

	'global': In this case the N and ... dimensions of the inputs
(see Input types)
are flattened into a new N_X sample axis, i.e. the inputs are treated as if they
were (N_X, C). From here on the average parameter applies as usual.

	ignore_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Integer specifying a target class to ignore. If given, this class index does not contribute
to the returned score, regardless of reduction method. If an index is ignored, and average=None
or 'none', the score for the ignored class will be returned as nan.

	top_k (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of the highest probability or logit score predictions considered finding the correct label,
relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

	multiclass (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – Used only in certain special cases, where you want to treat inputs as a different type
than what they appear to be. See the parameter’s
documentation section
for a more detailed explanation and examples.

	subset_accuracy (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to compute subset accuracy for multi-label and multi-dimensional
multi-class inputs (has no effect for other input types).

	For multi-label inputs, if the parameter is set to True, then all labels for
each sample must be correctly predicted for the sample to count as correct. If it
is set to False, then all labels are counted separately - this is equivalent to
flattening inputs beforehand (i.e. preds = preds.flatten() and same for target).

	For multi-dimensional multi-class inputs, if the parameter is set to True, then all
sub-sample (on the extra axis) must be correct for the sample to be counted as correct.
If it is set to False, then all sub-samples are counter separately - this is equivalent,
in the case of label predictions, to flattening the inputs beforehand (i.e.
preds = preds.flatten() and same for target). Note that the top_k parameter
still applies in both cases, if set.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If top_k is not an integer larger than 0.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If average is none of "micro", "macro", "weighted", "samples", "none", None.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If two different input modes are provided, eg. using multi-label with multi-class.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If top_k parameter is set for multi-label inputs.

Example

>>> import torch
>>> from torchmetrics import Accuracy
>>> target = torch.tensor([0, 1, 2, 3])
>>> preds = torch.tensor([0, 2, 1, 3])
>>> accuracy = Accuracy()
>>> accuracy(preds, target)
tensor(0.5000)

>>> target = torch.tensor([0, 1, 2])
>>> preds = torch.tensor([[0.1, 0.9, 0], [0.3, 0.1, 0.6], [0.2, 0.5, 0.3]])
>>> accuracy = Accuracy(top_k=2)
>>> accuracy(preds, target)
tensor(0.6667)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/accuracy.py#L263-L270]

	Computes accuracy based on inputs passed in to update previously.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/accuracy.py#L209-L261]

	Update state with predictions and targets. See
Input types for more information on input
types.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model (logits, probabilities, or labels)

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth labels

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.accuracy(preds, target, average='micro', mdmc_average='global', threshold=0.5, top_k=None, subset_accuracy=False, num_classes=None, multiclass=None, ignore_index=None)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/accuracy.py#L258-L420]

	Computes Accuracy

[image: \text{Accuracy} = \frac{1}{N}\sum_i^N 1(y_i = \hat{y}_i)]

Where [image: y] is a tensor of target values, and [image: \hat{y}] is a
tensor of predictions.

For multi-class and multi-dimensional multi-class data with probability or logits predictions, the
parameter top_k generalizes this metric to a Top-K accuracy metric: for each sample the
top-K highest probability or logits items are considered to find the correct label.

For multi-label and multi-dimensional multi-class inputs, this metric computes the “global”
accuracy by default, which counts all labels or sub-samples separately. This can be
changed to subset accuracy (which requires all labels or sub-samples in the sample to
be correctly predicted) by setting subset_accuracy=True.

Accepts all input types listed in Input types.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model (probabilities, logits or labels)

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth labels

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines the reduction that is applied. Should be one of the following:

	'micro' [default]: Calculate the metric globally, across all samples and classes.

	'macro': Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).

	'weighted': Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support (tp + fn).

	'none' or None: Calculate the metric for each class separately, and return
the metric for every class.

	'samples': Calculate the metric for each sample, and average the metrics
across samples (with equal weights for each sample).

Note

What is considered a sample in the multi-dimensional multi-class case
depends on the value of mdmc_average.

Note

If 'none' and a given class doesn’t occur in the preds or target,
the value for the class will be nan.

	mdmc_average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines how averaging is done for multi-dimensional multi-class inputs (on top of the
average parameter). Should be one of the following:

	None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

	'samplewise': In this case, the statistics are computed separately for each
sample on the N axis, and then averaged over samples.
The computation for each sample is done by treating the flattened extra axes ...
(see Input types) as the N dimension within the sample,
and computing the metric for the sample based on that.

	'global': In this case the N and ... dimensions of the inputs
(see Input types)
are flattened into a new N_X sample axis, i.e. the inputs are treated as if they
were (N_X, C). From here on the average parameter applies as usual.

	num_classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of classes. Necessary for 'macro', 'weighted' and None average methods.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

	top_k (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of the highest probability or logit score predictions considered finding the correct label,
relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

	multiclass (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – Used only in certain special cases, where you want to treat inputs as a different type
than what they appear to be. See the parameter’s
documentation section
for a more detailed explanation and examples.

	ignore_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Integer specifying a target class to ignore. If given, this class index does not contribute
to the returned score, regardless of reduction method. If an index is ignored, and average=None
or 'none', the score for the ignored class will be returned as nan.

	subset_accuracy (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to compute subset accuracy for multi-label and multi-dimensional
multi-class inputs (has no effect for other input types).

	For multi-label inputs, if the parameter is set to True, then all labels for
each sample must be correctly predicted for the sample to count as correct. If it
is set to False, then all labels are counted separately - this is equivalent to
flattening inputs beforehand (i.e. preds = preds.flatten() and same for target).

	For multi-dimensional multi-class inputs, if the parameter is set to True, then all
sub-sample (on the extra axis) must be correct for the sample to be counted as correct.
If it is set to False, then all sub-samples are counter separately - this is equivalent,
in the case of label predictions, to flattening the inputs beforehand (i.e.
preds = preds.flatten() and same for target). Note that the top_k parameter
still applies in both cases, if set.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If top_k parameter is set for multi-label inputs.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If average is none of "micro", "macro", "weighted", "samples", "none", None.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If mdmc_average is not one of None, "samplewise", "global".

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If average is set but num_classes is not provided.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If num_classes is set
 and ignore_index is not in the range [0, num_classes).

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If top_k is not an integer larger than 0.

Example

>>> import torch
>>> from torchmetrics.functional import accuracy
>>> target = torch.tensor([0, 1, 2, 3])
>>> preds = torch.tensor([0, 2, 1, 3])
>>> accuracy(preds, target)
tensor(0.5000)

>>> target = torch.tensor([0, 1, 2])
>>> preds = torch.tensor([[0.1, 0.9, 0], [0.3, 0.1, 0.6], [0.2, 0.5, 0.3]])
>>> accuracy(preds, target, top_k=2)
tensor(0.6667)

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

 AUC

AUC

Module Interface

	
class torchmetrics.AUC(reorder=False, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/auc.py#L24-L77]

	Computes Area Under the Curve (AUC) using the trapezoidal rule

Forward accepts two input tensors that should be 1D and have the same number
of elements

	Parameters

	
	reorder (bool [https://docs.python.org/3/library/functions.html#bool]) – AUC expects its first input to be sorted. If this is not the case,
setting this argument to True will use a stable sorting algorithm to
sort the input in descending order

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/auc.py#L73-L77]

	Computes AUC based on inputs passed in to update previously.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/auc.py#L61-L71]

	Update state with predictions and targets.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model (probabilities, or labels)

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth labels

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.auc(x, y, reorder=False)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/auc.py#L104-L133]

	Computes Area Under the Curve (AUC) using the trapezoidal rule.

	Parameters

	
	x (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – x-coordinates, must be either increasing or decreasing

	y (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – y-coordinates

	reorder (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, will reorder the arrays to make it either increasing or decreasing

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	Tensor containing AUC score

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If both x and y tensors are not 1d.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If both x and y don’t have the same numnber of elements.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If x tesnsor is neither increasing nor decreasing.

Example

>>> from torchmetrics.functional import auc
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> auc(x, y)
tensor(4.)
>>> auc(x, y, reorder=True)
tensor(4.)

 AUROC

AUROC

Module Interface

	
class torchmetrics.AUROC(num_classes=None, pos_label=None, average='macro', max_fpr=None, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/auroc.py#L27-L178]

	Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC [https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Further_interpretations]).
Works for both binary, multilabel and multiclass problems. In the case of
multiclass, the values will be calculated based on a one-vs-the-rest approach.

Forward accepts

	preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor
with probabilities, where C is the number of classes.

	target (long tensor): (N, ...) or (N, C, ...) with integer labels

For non-binary input, if the preds and target tensor have the same
size the input will be interpretated as multilabel and if preds have one
dimension more than the target tensor the input will be interpretated as
multiclass.

Note

If either the positive class or negative class is completly missing in the target tensor,
the auroc score is meaningless in this case and a score of 0 will be returned together
with an warning.

	Parameters

	
	num_classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – integer with number of classes for multi-label and multiclass problems.

Should be set to None for binary problems

	pos_label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – integer determining the positive class. Default is None
which for binary problem is translated to 1. For multiclass problems
this argument should not be set as we iteratively change it in the
range [0, num_classes-1]

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –
	'micro' computes metric globally. Only works for multilabel problems

	'macro' computes metric for each class and uniformly averages them

	'weighted' computes metric for each class and does a weighted-average,
where each class is weighted by their support (accounts for class imbalance)

	None computes and returns the metric per class

	max_fpr (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – If not None, calculates standardized partial AUC over the
range [0, max_fpr]. Should be a float between 0 and 1.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If average is none of None, "macro" or "weighted".

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If max_fpr is not a float in the range (0, 1].

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If PyTorch version is below 1.6 since max_fpr requires torch.bucketize
 which is not available below 1.6.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the mode of data (binary, multi-label, multi-class) changes between batches.

	Example (binary case):
	>>> from torchmetrics import AUROC
>>> preds = torch.tensor([0.13, 0.26, 0.08, 0.19, 0.34])
>>> target = torch.tensor([0, 0, 1, 1, 1])
>>> auroc = AUROC(pos_label=1)
>>> auroc(preds, target)
tensor(0.5000)

	Example (multiclass case):
	>>> preds = torch.tensor([[0.90, 0.05, 0.05],
... [0.05, 0.90, 0.05],
... [0.05, 0.05, 0.90],
... [0.85, 0.05, 0.10],
... [0.10, 0.10, 0.80]])
>>> target = torch.tensor([0, 1, 1, 2, 2])
>>> auroc = AUROC(num_classes=3)
>>> auroc(preds, target)
tensor(0.7778)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/auroc.py#L164-L178]

	Computes AUROC based on inputs passed in to update previously.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/auroc.py#L145-L162]

	Update state with predictions and targets.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model (probabilities, or labels)

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth labels

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.auroc(preds, target, num_classes=None, pos_label=None, average='macro', max_fpr=None, sample_weights=None)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/auroc.py#L196-L269]

	Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC [https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Further_interpretations])

For non-binary input, if the preds and target tensor have the same
size the input will be interpretated as multilabel and if preds have one
dimension more than the target tensor the input will be interpretated as
multiclass.

Note

If either the positive class or negative class is completly missing in the target tensor,
the auroc score is meaningless in this case and a score of 0 will be returned together
with a warning.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – predictions from model (logits or probabilities)

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth labels

	num_classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – integer with number of classes for multi-label and multiclass problems.
Should be set to None for binary problems

	pos_label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – integer determining the positive class. Default is None
which for binary problem is translate to 1. For multiclass problems
this argument should not be set as we iteratively change it in the
range [0,num_classes-1]

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –
	'micro' computes metric globally. Only works for multilabel problems

	'macro' computes metric for each class and uniformly averages them

	'weighted' computes metric for each class and does a weighted-average,
where each class is weighted by their support (accounts for class imbalance)

	None computes and returns the metric per class

	max_fpr (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – If not None, calculates standardized partial AUC over the
range [0, max_fpr]. Should be a float between 0 and 1.

	sample_weights (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence]]) – sample weights for each data point

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If max_fpr is not a float in the range (0, 1].

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If PyTorch version is below 1.6 since max_fpr requires torch.bucketize
 which is not available below 1.6.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If max_fpr is not set to None and the mode is not binary
 since partial AUC computation is not available in multilabel/multiclass.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If average is none of None, "macro" or "weighted".

	Example (binary case):
	>>> from torchmetrics.functional import auroc
>>> preds = torch.tensor([0.13, 0.26, 0.08, 0.19, 0.34])
>>> target = torch.tensor([0, 0, 1, 1, 1])
>>> auroc(preds, target, pos_label=1)
tensor(0.5000)

	Example (multiclass case):
	>>> preds = torch.tensor([[0.90, 0.05, 0.05],
... [0.05, 0.90, 0.05],
... [0.05, 0.05, 0.90],
... [0.85, 0.05, 0.10],
... [0.10, 0.10, 0.80]])
>>> target = torch.tensor([0, 1, 1, 2, 2])
>>> auroc(preds, target, num_classes=3)
tensor(0.7778)

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

 Average Precision

Average Precision

Module Interface

	
class torchmetrics.AveragePrecision(num_classes=None, pos_label=None, average='macro', **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/avg_precision.py#L28-L136]

	Computes the average precision score, which summarises the precision recall curve into one number. Works for
both binary and multiclass problems. In the case of multiclass, the values will be calculated based on a one-
vs-the-rest approach.

Forward accepts

	preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor
with probabilities, where C is the number of classes.

	target (long tensor): (N, ...) with integer labels

	Parameters

	
	num_classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – integer with number of classes. Not nessesary to provide
for binary problems.

	pos_label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – integer determining the positive class. Default is None
which for binary problem is translated to 1. For multiclass problems
this argument should not be set as we iteratively change it in the
range [0, num_classes-1]

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – defines the reduction that is applied in the case of multiclass and multilabel input.
Should be one of the following:

	'macro' [default]: Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).

	'micro': Calculate the metric globally, across all samples and classes. Cannot be
used with multiclass input.

	'weighted': Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support.

	'none' or None: Calculate the metric for each class separately, and return
the metric for every class.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Example (binary case):
	>>> from torchmetrics import AveragePrecision
>>> pred = torch.tensor([0, 0.1, 0.8, 0.4])
>>> target = torch.tensor([0, 1, 1, 1])
>>> average_precision = AveragePrecision(pos_label=1)
>>> average_precision(pred, target)
tensor(1.)

	Example (multiclass case):
	>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> average_precision = AveragePrecision(num_classes=5, average=None)
>>> average_precision(pred, target)
[tensor(1.), tensor(1.), tensor(0.2500), tensor(0.2500), tensor(nan)]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/avg_precision.py#L126-L136]

	Compute the average precision score.

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], List [https://docs.python.org/3/library/typing.html#typing.List][Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]]]

	Returns

	tensor with average precision. If multiclass return list of such tensors, one for each class

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/avg_precision.py#L111-L124]

	Update state with predictions and targets.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.average_precision(preds, target, num_classes=None, pos_label=None, average='macro', sample_weights=None)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/average_precision.py#L179-L234]

	Computes the average precision score.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – predictions from model (logits or probabilities)

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – ground truth values

	num_classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – integer with number of classes. Not nessesary to provide
for binary problems.

	pos_label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – integer determining the positive class. Default is None which for binary problem is translated
to 1. For multiclass problems his argument should not be set as we iteratively change it in the
range [0, num_classes-1]

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – defines the reduction that is applied in the case of multiclass and multilabel input.
Should be one of the following:

	'macro' [default]: Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).

	'micro': Calculate the metric globally, across all samples and classes. Cannot be
used with multiclass input.

	'weighted': Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support.

	'none' or None: Calculate the metric for each class separately, and return
the metric for every class.

	sample_weights (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence]]) – sample weights for each data point

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]], Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]]

	Returns

	tensor with average precision. If multiclass will return list
of such tensors, one for each class

	Example (binary case):
	>>> from torchmetrics.functional import average_precision
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 1, 1])
>>> average_precision(pred, target, pos_label=1)
tensor(1.)

	Example (multiclass case):
	>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> average_precision(pred, target, num_classes=5, average=None)
[tensor(1.), tensor(1.), tensor(0.2500), tensor(0.2500), tensor(nan)]

 Binned Average Precision

Binned Average Precision

Module Interface

	
class torchmetrics.BinnedAveragePrecision(num_classes, thresholds=100, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/binned_precision_recall.py#L182-L230]

	Computes the average precision score, which summarises the precision recall curve into one number. Works for
both binary and multiclass problems. In the case of multiclass, the values will be calculated based on a one-
vs-the-rest approach.

Computation is performed in constant-memory by computing precision and recall
for thresholds buckets/thresholds (evenly distributed between 0 and 1).

Forward accepts

	preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor
with probabilities, where C is the number of classes.

	target (long tensor): (N, ...) with integer labels

	Parameters

	
	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – integer with number of classes. Not nessesary to provide for binary problems.

	thresholds (Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]]) – list or tensor with specific thresholds or a number of bins from linear sampling.
It is used for computation will lead to more detailed curve and accurate estimates,
but will be slower and consume more memory

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If thresholds is not a list or tensor

	Example (binary case):
	>>> from torchmetrics import BinnedAveragePrecision
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 1, 1])
>>> average_precision = BinnedAveragePrecision(num_classes=1, thresholds=10)
>>> average_precision(pred, target)
tensor(1.0000)

	Example (multiclass case):
	>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> average_precision = BinnedAveragePrecision(num_classes=5, thresholds=10)
>>> average_precision(pred, target)
[tensor(1.0000), tensor(1.0000), tensor(0.2500), tensor(0.2500), tensor(-0.)]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/binned_precision_recall.py#L228-L230]

	Returns float tensor of size n_classes.

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]], Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]]

 Binned Precision Recall Curve

Binned Precision Recall Curve

Module Interface

	
class torchmetrics.BinnedPrecisionRecallCurve(num_classes, thresholds=100, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/binned_precision_recall.py#L45-L179]

	Computes precision-recall pairs for different thresholds. Works for both binary and multiclass problems. In
the case of multiclass, the values will be calculated based on a one-vs-the-rest approach.

Computation is performed in constant-memory by computing precision and recall
for thresholds buckets/thresholds (evenly distributed between 0 and 1).

Forward accepts

	preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor
with probabilities, where C is the number of classes.

	target (long tensor): (N, ...) or (N, C, ...) with integer labels

	Parameters

	
	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – integer with number of classes. For binary, set to 1.

	thresholds (Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]]) – list or tensor with specific thresholds or a number of bins from linear sampling.
It is used for computation will lead to more detailed curve and accurate estimates,
but will be slower and consume more memory.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If thresholds is not a int, list or tensor

	Example (binary case):
	>>> from torchmetrics import BinnedPrecisionRecallCurve
>>> pred = torch.tensor([0, 0.1, 0.8, 0.4])
>>> target = torch.tensor([0, 1, 1, 0])
>>> pr_curve = BinnedPrecisionRecallCurve(num_classes=1, thresholds=5)
>>> precision, recall, thresholds = pr_curve(pred, target)
>>> precision
tensor([0.5000, 0.5000, 1.0000, 1.0000, 1.0000, 1.0000])
>>> recall
tensor([1.0000, 0.5000, 0.5000, 0.5000, 0.0000, 0.0000])
>>> thresholds
tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])

	Example (multiclass case):
	>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> pr_curve = BinnedPrecisionRecallCurve(num_classes=5, thresholds=3)
>>> precision, recall, thresholds = pr_curve(pred, target)
>>> precision
[tensor([0.2500, 1.0000, 1.0000, 1.0000]),
tensor([0.2500, 1.0000, 1.0000, 1.0000]),
tensor([2.5000e-01, 1.0000e-06, 1.0000e+00, 1.0000e+00]),
tensor([2.5000e-01, 1.0000e-06, 1.0000e+00, 1.0000e+00]),
tensor([2.5000e-07, 1.0000e+00, 1.0000e+00, 1.0000e+00])]
>>> recall
[tensor([1.0000, 1.0000, 0.0000, 0.0000]),
tensor([1.0000, 1.0000, 0.0000, 0.0000]),
tensor([1.0000, 0.0000, 0.0000, 0.0000]),
tensor([1.0000, 0.0000, 0.0000, 0.0000]),
tensor([0., 0., 0., 0.])]
>>> thresholds
[tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000])]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/binned_precision_recall.py#L167-L179]

	Returns float tensor of size n_classes.

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][List [https://docs.python.org/3/library/typing.html#typing.List][Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]], List [https://docs.python.org/3/library/typing.html#typing.List][Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]], List [https://docs.python.org/3/library/typing.html#typing.List][Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]]]]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/binned_precision_recall.py#L145-L165]

	
	Args
	preds: (n_samples, n_classes) tensor
target: (n_samples, n_classes) tensor

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

 Binned Recall At Fixed Precision

Binned Recall At Fixed Precision

Module Interface

	
class torchmetrics.BinnedRecallAtFixedPrecision(num_classes, min_precision, thresholds=100, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/binned_precision_recall.py#L233-L302]

	Computes the higest possible recall value given the minimum precision thresholds provided.

Computation is performed in constant-memory by computing precision and recall
for thresholds buckets/thresholds (evenly distributed between 0 and 1).

Forward accepts

	preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor
with probabilities, where C is the number of classes.

	target (long tensor): (N, ...) with integer labels

	Parameters

	
	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – integer with number of classes. Provide 1 for binary problems.

	min_precision (float [https://docs.python.org/3/library/functions.html#float]) – float value specifying minimum precision threshold.

	thresholds (Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], List [https://docs.python.org/3/library/typing.html#typing.List][float [https://docs.python.org/3/library/functions.html#float]]]) – list or tensor with specific thresholds or a number of bins from linear sampling.
It is used for computation will lead to more detailed curve and accurate estimates,
but will be slower and consume more memory

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If thresholds is not a list or tensor

	Example (binary case):
	>>> from torchmetrics import BinnedRecallAtFixedPrecision
>>> pred = torch.tensor([0, 0.2, 0.5, 0.8])
>>> target = torch.tensor([0, 1, 1, 0])
>>> average_precision = BinnedRecallAtFixedPrecision(num_classes=1, thresholds=10, min_precision=0.5)
>>> average_precision(pred, target)
(tensor(1.0000), tensor(0.1111))

	Example (multiclass case):
	>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> average_precision = BinnedRecallAtFixedPrecision(num_classes=5, thresholds=10, min_precision=0.5)
>>> average_precision(pred, target)
(tensor([1.0000, 1.0000, 0.0000, 0.0000, 0.0000]),
tensor([6.6667e-01, 6.6667e-01, 1.0000e+06, 1.0000e+06, 1.0000e+06]))

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/binned_precision_recall.py#L289-L302]

	Returns float tensor of size n_classes.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor], Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]]

 Calibration Error

Calibration Error

Module Interface

	
class torchmetrics.CalibrationError(n_bins=15, norm='l1', **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/calibration_error.py#L24-L107]

	Computes the Top-label Calibration Error [https://arxiv.org/pdf/1909.10155.pdf]
Three different norms are implemented, each corresponding to variations on the calibration error metric.

L1 norm (Expected Calibration Error)

[image: \text{ECE} = \sum_i^N b_i \|(p_i - c_i)\|]

Infinity norm (Maximum Calibration Error)

[image: \text{MCE} = \max_{i} (p_i - c_i)]

L2 norm (Root Mean Square Calibration Error)

[image: \text{RMSCE} = \sqrt{\sum_i^N b_i(p_i - c_i)^2}]

Where [image: p_i] is the top-1 prediction accuracy in bin [image: i],
[image: c_i] is the average confidence of predictions in bin [image: i], and
[image: b_i] is the fraction of data points in bin [image: i].

Note

L2-norm debiasing is not yet supported.

	Parameters

	
	n_bins (int [https://docs.python.org/3/library/functions.html#int]) – Number of bins to use when computing probabilities and accuracies.

	norm (str [https://docs.python.org/3/library/stdtypes.html#str]) – Norm used to compare empirical and expected probability bins.
Defaults to “l1”, or Expected Calibration Error.

	debias – Applies debiasing term, only implemented for l2 norm. Defaults to True.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/calibration_error.py#L99-L107]

	Computes calibration error across all confidences and accuracies.

	Returns

	Calibration error across previously collected examples.

	Return type

	Tensor

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/calibration_error.py#L86-L97]

	Computes top-level confidences and accuracies for the input probabilities and appends them to internal
state.

	Parameters

	
	preds (Tensor) – Model output probabilities.

	target (Tensor) – Ground-truth target class labels.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.calibration_error(preds, target, n_bins=15, norm='l1')[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/calibration_error.py#L168-L212]

	Computes the Top-label Calibration Error [https://arxiv.org/pdf/1909.10155.pdf]

Three different norms are implemented, each corresponding to variations on the calibration error metric.

L1 norm (Expected Calibration Error)

[image: \text{ECE} = \sum_i^N b_i \|(p_i - c_i)\|]

Infinity norm (Maximum Calibration Error)

[image: \text{MCE} = \max_{i} (p_i - c_i)]

L2 norm (Root Mean Square Calibration Error)

[image: \text{RMSCE} = \sqrt{\sum_i^N b_i(p_i - c_i)^2}]

Where [image: p_i] is the top-1 prediction accuracy in bin [image: i],
[image: c_i] is the average confidence of predictions in bin [image: i], and
[image: b_i] is the fraction of data points in bin [image: i].

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Model output probabilities.

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground-truth target class labels.

	n_bins (int [https://docs.python.org/3/library/functions.html#int]) – Number of bins to use when computing t.

	norm (str [https://docs.python.org/3/library/stdtypes.html#str]) – Norm used to compare empirical and expected probability bins.
Defaults to “l1”, or Expected Calibration Error.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

 Cohen Kappa

Cohen Kappa

Module Interface

	
class torchmetrics.CohenKappa(num_classes, weights=None, threshold=0.5, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/cohen_kappa.py#L23-L105]

	Calculates Cohen’s kappa score [https://en.wikipedia.org/wiki/Cohen%27s_kappa] that measures inter-annotator agreement. It is defined as

[image: \kappa = (p_o - p_e) / (1 - p_e)]

where [image: p_o] is the empirical probability of agreement and [image: p_e] is
the expected agreement when both annotators assign labels randomly. Note that
[image: p_e] is estimated using a per-annotator empirical prior over the
class labels.

Works with binary, multiclass, and multilabel data. Accepts probabilities from a model output or
integer class values in prediction. Works with multi-dimensional preds and target.

	Forward accepts
	
	preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

	target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument
to convert into integer labels. This is the case for binary and multi-label probabilities or logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

	Parameters

	
	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – Number of classes in the dataset.

	weights (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Weighting type to calculate the score. Choose from:

	None or 'none': no weighting

	'linear': linear weighting

	'quadratic': quadratic weighting

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> from torchmetrics import CohenKappa
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> cohenkappa = CohenKappa(num_classes=2)
>>> cohenkappa(preds, target)
tensor(0.5000)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/cohen_kappa.py#L103-L105]

	Computes cohen kappa score.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/cohen_kappa.py#L93-L101]

	Update state with predictions and targets.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.cohen_kappa(preds, target, num_classes, weights=None, threshold=0.5)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/cohen_kappa.py#L70-L110]

	Calculates Cohen’s kappa score [https://en.wikipedia.org/wiki/Cohen%27s_kappa] that measures inter-annotator agreement.

It is defined as

[image: \kappa = (p_o - p_e) / (1 - p_e)]

where [image: p_o] is the empirical probability of agreement and [image: p_e] is
the expected agreement when both annotators assign labels randomly. Note that
[image: p_e] is estimated using a per-annotator empirical prior over the
class labels.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – (float or long tensor), Either a (N, ...) tensor with labels or
(N, C, ...) where C is the number of classes, tensor with labels/probabilities

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – target (long tensor), tensor with shape (N, ...) with ground true labels

	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – Number of classes in the dataset.

	weights (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Weighting type to calculate the score. Choose from:

	None or 'none': no weighting

	'linear': linear weighting

	'quadratic': quadratic weighting

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold value for binary or multi-label probabilities.

Example

>>> from torchmetrics.functional import cohen_kappa
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> cohen_kappa(preds, target, num_classes=2)
tensor(0.5000)

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

 Confusion Matrix

Confusion Matrix

Module Interface

	
class torchmetrics.ConfusionMatrix(num_classes, normalize=None, threshold=0.5, multilabel=False, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/confusion_matrix.py#L23-L134]

	Computes the confusion matrix [https://en.wikipedia.org/wiki/Confusion_matrix#Table_of_confusion].

Works with binary, multiclass, and multilabel data. Accepts probabilities or logits from a model output
or integer class values in prediction. Works with multi-dimensional preds and target, but it should be noted that
additional dimensions will be flattened.

Forward accepts

	preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

	target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument
to convert into integer labels. This is the case for binary and multi-label probabilities or logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

If working with multilabel data, setting the is_multilabel argument to True will make sure that a
confusion matrix gets calculated per label [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html].

	Parameters

	
	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – Number of classes in the dataset.

	normalize (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Normalization mode for confusion matrix. Choose from:

	None or 'none': no normalization (default)

	'true': normalization over the targets (most commonly used)

	'pred': normalization over the predictions

	'all': normalization over the whole matrix

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

	multilabel (bool [https://docs.python.org/3/library/functions.html#bool]) – determines if data is multilabel or not.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Example (binary data):
	>>> from torchmetrics import ConfusionMatrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> confmat = ConfusionMatrix(num_classes=2)
>>> confmat(preds, target)
tensor([[2, 0],
 [1, 1]])

	Example (multiclass data):
	>>> target = torch.tensor([2, 1, 0, 0])
>>> preds = torch.tensor([2, 1, 0, 1])
>>> confmat = ConfusionMatrix(num_classes=3)
>>> confmat(preds, target)
tensor([[1, 1, 0],
 [0, 1, 0],
 [0, 0, 1]])

	Example (multilabel data):
	>>> target = torch.tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = torch.tensor([[0, 0, 1], [1, 0, 1]])
>>> confmat = ConfusionMatrix(num_classes=3, multilabel=True)
>>> confmat(preds, target)
tensor([[[1, 0], [0, 1]],
 [[1, 0], [1, 0]],
 [[0, 1], [0, 1]]])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/confusion_matrix.py#L127-L134]

	Computes confusion matrix.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	If multilabel=False this will be a [n_classes, n_classes] tensor and if multilabel=True
this will be a [n_classes, 2, 2] tensor.

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/confusion_matrix.py#L117-L125]

	Update state with predictions and targets.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.confusion_matrix(preds, target, num_classes, normalize=None, threshold=0.5, multilabel=False)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/confusion_matrix.py#L116-L186]

	Computes the confusion matrix [https://en.wikipedia.org/wiki/Confusion_matrix#Table_of_confusion]. Works with binary,
multiclass, and multilabel data. Accepts probabilities or logits from a model output or integer class
values in prediction. Works with multi-dimensional preds and target, but it should be noted that
additional dimensions will be flattened.

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument
to convert into integer labels. This is the case for binary and multi-label probabilities or logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

If working with multilabel data, setting the is_multilabel argument to True will make sure that a
confusion matrix gets calculated per label [https://scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html].

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – (float or long tensor), Either a (N, ...) tensor with labels or
(N, C, ...) where C is the number of classes, tensor with labels/logits/probabilities

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – target (long tensor), tensor with shape (N, ...) with ground true labels

	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – Number of classes in the dataset.

	normalize (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Normalization mode for confusion matrix. Choose from:

	None or 'none': no normalization (default)

	'true': normalization over the targets (most commonly used)

	'pred': normalization over the predictions

	'all': normalization over the whole matrix

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

	multilabel (bool [https://docs.python.org/3/library/functions.html#bool]) – determines if data is multilabel or not.

	Example (binary data):
	>>> from torchmetrics import ConfusionMatrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> confmat = ConfusionMatrix(num_classes=2)
>>> confmat(preds, target)
tensor([[2, 0],
 [1, 1]])

	Example (multiclass data):
	>>> target = torch.tensor([2, 1, 0, 0])
>>> preds = torch.tensor([2, 1, 0, 1])
>>> confmat = ConfusionMatrix(num_classes=3)
>>> confmat(preds, target)
tensor([[1, 1, 0],
 [0, 1, 0],
 [0, 0, 1]])

	Example (multilabel data):
	>>> target = torch.tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = torch.tensor([[0, 0, 1], [1, 0, 1]])
>>> confmat = ConfusionMatrix(num_classes=3, multilabel=True)
>>> confmat(preds, target)
tensor([[[1, 0], [0, 1]],
 [[1, 0], [1, 0]],
 [[0, 1], [0, 1]]])

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

 Coverage Error

Coverage Error

Module Interface

	
class torchmetrics.CoverageError(**kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/ranking.py#L30-L82]

	Computes multilabel coverage error [1]. The score measure how far we need to go through the ranked scores to
cover all true labels. The best value is equal to the average number of labels in the target tensor per sample.

	Parameters

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> from torchmetrics import CoverageError
>>> _ = torch.manual_seed(42)
>>> preds = torch.rand(10, 5)
>>> target = torch.randint(2, (10, 5))
>>> metric = CoverageError()
>>> metric(preds, target)
tensor(3.9000)

References

[1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and
knowledge discovery handbook (pp. 667-685). Springer US.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/ranking.py#L80-L82]

	Computes the multilabel coverage error.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target, sample_weight=None)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/ranking.py#L64-L78]

	
	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – tensor of shape [N,L] where N is the number of samples and L is the number
of labels. Should either be probabilities of the positive class or corresponding logits

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – tensor of shape [N,L] where N is the number of samples and L is the number
of labels. Should only contain binary labels.

	sample_weight (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]]) – tensor of shape N where N is the number of samples. How much each sample
should be weighted in the final score.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.coverage_error(preds, target, sample_weight=None)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/ranking.py#L74-L99]

	Computes multilabel coverage error [1]. The score measure how far we need to go through the ranked scores to
cover all true labels. The best value is equal to the average number of labels in the target tensor per sample.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – tensor of shape [N,L] where N is the number of samples and L is the number
of labels. Should either be probabilities of the positive class or corresponding logits

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – tensor of shape [N,L] where N is the number of samples and L is the number
of labels. Should only contain binary labels.

	sample_weight (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]]) – tensor of shape N where N is the number of samples. How much each sample
should be weighted in the final score.

Example

>>> from torchmetrics.functional import coverage_error
>>> _ = torch.manual_seed(42)
>>> preds = torch.rand(10, 5)
>>> target = torch.randint(2, (10, 5))
>>> coverage_error(preds, target)
tensor(3.9000)

References

[1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and
knowledge discovery handbook (pp. 667-685). Springer US.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

 Dice

Dice

Module Interface

	
class torchmetrics.Dice(zero_division=0, num_classes=None, threshold=0.5, average='micro', mdmc_average='global', ignore_index=None, top_k=None, multiclass=None, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/dice.py#L23-L167]

	Computes Dice [https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient]:

[image: \text{Dice} = \frac{\text{2 * TP}}{\text{2 * TP} + \text{FP} + \text{FN}}]

Where [image: \text{TP}] and [image: \text{FP}] represent the number of true positives and
false positives respecitively.

It is recommend set ignore_index to index of background class.

The reduction method (how the precision scores are aggregated) is controlled by the
average parameter, and additionally by the mdmc_average parameter in the
multi-dimensional multi-class case. Accepts all inputs listed in Input types.

	Parameters

	
	num_classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of classes. Necessary for 'macro', 'weighted' and None average methods.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

	zero_division (int [https://docs.python.org/3/library/functions.html#int]) – The value to use for the score if denominator equals zero.

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines the reduction that is applied. Should be one of the following:

	'micro' [default]: Calculate the metric globally, across all samples and classes.

	'macro': Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).

	'weighted': Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support (tp + fn).

	'none' or None: Calculate the metric for each class separately, and return
the metric for every class.

	'samples': Calculate the metric for each sample, and average the metrics
across samples (with equal weights for each sample).

Note

What is considered a sample in the multi-dimensional multi-class case
depends on the value of mdmc_average.

	mdmc_average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines how averaging is done for multi-dimensional multi-class inputs (on top of the
average parameter). Should be one of the following:

	None [default]: Should be left unchanged if your data is not multi-dimensional
multi-class.

	'samplewise': In this case, the statistics are computed separately for each
sample on the N axis, and then averaged over samples.
The computation for each sample is done by treating the flattened extra axes ...
(see Input types) as the N dimension within the sample,
and computing the metric for the sample based on that.

	'global': In this case the N and ... dimensions of the inputs
(see Input types) are flattened into a new N_X sample axis, i.e.
the inputs are treated as if they were (N_X, C).
From here on the average parameter applies as usual.

	ignore_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Integer specifying a target class to ignore. If given, this class index does not contribute
to the returned score, regardless of reduction method. If an index is ignored, and average=None
or 'none', the score for the ignored class will be returned as nan.

	top_k (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of the highest probability or logit score predictions considered finding the correct label,
relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.
Should be left at default (None) for all other types of inputs.

	multiclass (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – Used only in certain special cases, where you want to treat inputs as a different type
than what they appear to be. See the parameter’s
documentation section
for a more detailed explanation and examples.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If average is none of "micro", "macro", "weighted", "samples", "none", None.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If mdmc_average is not one of None, "samplewise", "global".

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If average is set but num_classes is not provided.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If num_classes is set and ignore_index is not in the range [0, num_classes).

Example

>>> import torch
>>> from torchmetrics import Dice
>>> preds = torch.tensor([2, 0, 2, 1])
>>> target = torch.tensor([1, 1, 2, 0])
>>> dice = Dice(average='micro')
>>> dice(preds, target)
tensor(0.2500)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/dice.py#L156-L167]

	Computes the dice score based on inputs passed in to update previously.

	Returns

	
	If average in ['micro', 'macro', 'weighted', 'samples'], a one-element tensor will be returned

	If average in ['none', None], the shape will be (C,), where C stands for the number
of classes

	Return type

	The shape of the returned tensor depends on the average parameter

Functional Interface

	
torchmetrics.functional.dice(preds, target, zero_division=0, average='micro', mdmc_average='global', threshold=0.5, top_k=None, num_classes=None, multiclass=None, ignore_index=None)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/dice.py#L158-L303]

	Computes Dice [https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient]:

[image: \text{Dice} = \frac{\text{2 * TP}}{\text{2 * TP} + \text{FP} + \text{FN}}]

Where [image: \text{TP}] and [image: \text{FN}] represent the number of true positives and
false negatives respecitively.

It is recommend set ignore_index to index of background class.

The reduction method (how the recall scores are aggregated) is controlled by the
average parameter, and additionally by the mdmc_average parameter in the
multi-dimensional multi-class case. Accepts all inputs listed in Input types.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model (probabilities, logits or labels)

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	zero_division (int [https://docs.python.org/3/library/functions.html#int]) – The value to use for the score if denominator equals zero

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines the reduction that is applied. Should be one of the following:

	'micro' [default]: Calculate the metric globally, across all samples and classes.

	'macro': Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).

	'weighted': Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support (tp + fn).

	'none' or None: Calculate the metric for each class separately, and return
the metric for every class.

	'samples': Calculate the metric for each sample, and average the metrics
across samples (with equal weights for each sample).

Note

What is considered a sample in the multi-dimensional multi-class case
depends on the value of mdmc_average.

Note

If 'none' and a given class doesn’t occur in the preds or target,
the value for the class will be nan.

	mdmc_average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines how averaging is done for multi-dimensional multi-class inputs (on top of the
average parameter). Should be one of the following:

	None [default]: Should be left unchanged if your data is not multi-dimensional
multi-class.

	'samplewise': In this case, the statistics are computed separately for each
sample on the N axis, and then averaged over samples.
The computation for each sample is done by treating the flattened extra axes ...
(see Input types) as the N dimension within the sample,
and computing the metric for the sample based on that.

	'global': In this case the N and ... dimensions of the inputs
(see Input types)
are flattened into a new N_X sample axis, i.e. the inputs are treated as if they
were (N_X, C). From here on the average parameter applies as usual.

	ignore_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Integer specifying a target class to ignore. If given, this class index does not contribute
to the returned score, regardless of reduction method. If an index is ignored, and average=None
or 'none', the score for the ignored class will be returned as nan.

	num_classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of classes. Necessary for 'macro', 'weighted' and None average methods.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

	top_k (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of the highest probability or logit score predictions considered finding the correct label,
relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

	multiclass (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – Used only in certain special cases, where you want to treat inputs as a different type
than what they appear to be. See the parameter’s
documentation section
for a more detailed explanation and examples.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	The shape of the returned tensor depends on the average parameter

	If average in ['micro', 'macro', 'weighted', 'samples'], a one-element tensor will be returned

	If average in ['none', None], the shape will be (C,), where C stands for the number of classes

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If average is not one of "micro", "macro", "weighted", "samples", "none" or None

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If mdmc_average is not one of None, "samplewise", "global".

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If average is set but num_classes is not provided.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If num_classes is set and ignore_index is not in the range [0, num_classes).

Example

>>> from torchmetrics.functional import dice
>>> preds = torch.tensor([2, 0, 2, 1])
>>> target = torch.tensor([1, 1, 2, 0])
>>> dice(preds, target, average='micro')
tensor(0.2500)

Dice Score

Functional Interface (was deprecated in v0.9)

	
torchmetrics.functional.dice_score(preds, target, bg=False, nan_score=0.0, no_fg_score=0.0, reduction='elementwise_mean')[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/dice.py#L27-L104]

	Compute dice score from prediction scores.

Supports only “macro” approach, which mean calculate the metric for each class separately,
and average the metrics across classes (with equal weights for each class).

Deprecated since version v0.9: The dice_score function was deprecated in v0.9 and will be removed in v0.10. Use dice function instead.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – estimated probabilities

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – ground-truth labels

	bg (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to also compute dice for the background

	nan_score (float [https://docs.python.org/3/library/functions.html#float]) – score to return, if a NaN occurs during computation

	no_fg_score (float [https://docs.python.org/3/library/functions.html#float]) – (default, 0.0) score to return, if no foreground pixel was found in target

Deprecated since version v0.9: All different from default options will be changed to default.

	reduction (Literal [https://docs.python.org/3/library/typing.html#typing.Literal][‘elementwise_mean’, ‘sum’, ‘none’, None]) – (default, 'elementwise_mean') a method to reduce metric score over labels.

Deprecated since version v0.9: All different from default options will be changed to default.

	'elementwise_mean': takes the mean (default)

	'sum': takes the sum

	'none' or None: no reduction will be applied

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	Tensor containing dice score

Example

>>> from torchmetrics.functional import dice_score
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
... [0.05, 0.85, 0.05, 0.05],
... [0.05, 0.05, 0.85, 0.05],
... [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> dice_score(pred, target)
tensor(0.3333)

 F1 Score

F1 Score

Module Interface

	
class torchmetrics.F1Score(num_classes=None, threshold=0.5, average='micro', mdmc_average=None, ignore_index=None, top_k=None, multiclass=None, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/f_beta.py#L163-L275]

	Computes F1 metric.

F1 metrics correspond to a harmonic mean of the precision and recall scores.
Works with binary, multiclass, and multilabel data. Accepts logits or probabilities from a model
output or integer class values in prediction. Works with multi-dimensional preds and target.

Forward accepts

	preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

	target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument.
This is the case for binary and multi-label logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

	Parameters

	
	num_classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of classes. Necessary for 'macro', 'weighted' and None average methods.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines the reduction that is applied. Should be one of the following:

	'micro' [default]: Calculate the metric globally, across all samples and classes.

	'macro': Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).

	'weighted': Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support (tp + fn).

	'none' or None: Calculate the metric for each class separately, and return
the metric for every class.

	'samples': Calculate the metric for each sample, and average the metrics
across samples (with equal weights for each sample).

Note

What is considered a sample in the multi-dimensional multi-class case
depends on the value of mdmc_average.

	mdmc_average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines how averaging is done for multi-dimensional multi-class inputs (on top of the
average parameter). Should be one of the following:

	None [default]: Should be left unchanged if your data is not multi-dimensional
multi-class.

	'samplewise': In this case, the statistics are computed separately for each
sample on the N axis, and then averaged over samples.
The computation for each sample is done by treating the flattened extra axes ...
(see Input types) as the N dimension within the sample,
and computing the metric for the sample based on that.

	'global': In this case the N and ... dimensions of the inputs
(see Input types)
are flattened into a new N_X sample axis, i.e. the inputs are treated as if they
were (N_X, C). From here on the average parameter applies as usual.

	ignore_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Integer specifying a target class to ignore. If given, this class index does not contribute
to the returned score, regardless of reduction method. If an index is ignored, and average=None
or 'none', the score for the ignored class will be returned as nan.

	top_k (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of the highest probability or logit score predictions considered finding the correct label,
relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.
Should be left at default (None) for all other types of inputs.

	multiclass (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – Used only in certain special cases, where you want to treat inputs as a different type
than what they appear to be. See the parameter’s
documentation section
for a more detailed explanation and examples.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> import torch
>>> from torchmetrics import F1Score
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
>>> f1 = F1Score(num_classes=3)
>>> f1(preds, target)
tensor(0.3333)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Functional Interface

	
torchmetrics.functional.f1_score(preds, target, beta=1.0, average='micro', mdmc_average=None, ignore_index=None, num_classes=None, threshold=0.5, top_k=None, multiclass=None)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/f_beta.py#L247-L354]

	Computes F1 metric. F1 metrics correspond to a equally weighted average of the precision and recall scores.

Works with binary, multiclass, and multilabel data.
Accepts probabilities or logits from a model output or integer class values in prediction.
Works with multi-dimensional preds and target.

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument
to convert into integer labels. This is the case for binary and multi-label probabilities or logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

The reduction method (how the precision scores are aggregated) is controlled by the
average parameter, and additionally by the mdmc_average parameter in the
multi-dimensional multi-class case. Accepts all inputs listed in Input types.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model (probabilities, logits or labels)

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	beta (float [https://docs.python.org/3/library/functions.html#float]) – it is ignored

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines the reduction that is applied. Should be one of the following:

	'micro' [default]: Calculate the metric globally, across all samples and classes.

	'macro': Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).

	'weighted': Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support (tp + fn).

	'none' or None: Calculate the metric for each class separately, and return
the metric for every class.

	'samples': Calculate the metric for each sample, and average the metrics
across samples (with equal weights for each sample).

Note

What is considered a sample in the multi-dimensional multi-class case
depends on the value of mdmc_average.

Note

If 'none' and a given class doesn’t occur in the preds or target,
the value for the class will be nan.

	mdmc_average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines how averaging is done for multi-dimensional multi-class inputs (on top of the
average parameter). Should be one of the following:

	None [default]: Should be left unchanged if your data is not multi-dimensional multi-class.

	'samplewise': In this case, the statistics are computed separately for each
sample on the N axis, and then averaged over samples.
The computation for each sample is done by treating the flattened extra axes ...
(see Input types) as the N dimension within the sample,
and computing the metric for the sample based on that.

	'global': In this case the N and ... dimensions of the inputs
(see Input types)
are flattened into a new N_X sample axis, i.e. the inputs are treated as if they
were (N_X, C). From here on the average parameter applies as usual.

	ignore_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Integer specifying a target class to ignore. If given, this class index does not contribute
to the returned score, regardless of reduction method. If an index is ignored, and average=None
or 'none', the score for the ignored class will be returned as nan.

	num_classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of classes. Necessary for 'macro', 'weighted' and None average methods.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

	top_k (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of highest probability or logit score predictions considered to find the correct label,
relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

	multiclass (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – Used only in certain special cases, where you want to treat inputs as a different type
than what they appear to be. See the parameter’s
documentation section
for a more detailed explanation and examples.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	The shape of the returned tensor depends on the average parameter

	If average in ['micro', 'macro', 'weighted', 'samples'], a one-element tensor will be returned

	If average in ['none', None], the shape will be (C,), where C stands for the number
of classes

Example

>>> from torchmetrics.functional import f1_score
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
>>> f1_score(preds, target, num_classes=3)
tensor(0.3333)

 FBeta Score

FBeta Score

Module Interface

	
class torchmetrics.FBetaScore(num_classes=None, beta=1.0, threshold=0.5, average='micro', mdmc_average=None, ignore_index=None, top_k=None, multiclass=None, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/f_beta.py#L23-L160]

	Computes F-score [https://en.wikipedia.org/wiki/F-score], specifically:

[image: F_\beta = (1 + \beta^2) * \frac{\text{precision} * \text{recall}} {(\beta^2 * \text{precision}) + \text{recall}}]

Where [image: \beta] is some positive real factor. Works with binary, multiclass, and multilabel data.
Accepts logit scores or probabilities from a model output or integer class values in prediction.
Works with multi-dimensional preds and target.

Forward accepts

	preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

	target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument
to convert into integer labels. This is the case for binary and multi-label logits and probabilities.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

	Parameters

	
	num_classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of classes. Necessary for 'macro', 'weighted' and None average methods.

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Beta coefficient in the F measure.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines the reduction that is applied. Should be one of the following:

	'micro' [default]: Calculate the metric globally, across all samples and classes.

	'macro': Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).

	'weighted': Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support (tp + fn).

	'none' or None: Calculate the metric for each class separately, and return
the metric for every class.

	'samples': Calculate the metric for each sample, and average the metrics
across samples (with equal weights for each sample).

Note

What is considered a sample in the multi-dimensional multi-class case
depends on the value of mdmc_average.

Note

If 'none' and a given class doesn’t occur in the preds or target,
the value for the class will be nan.

	mdmc_average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines how averaging is done for multi-dimensional multi-class inputs (on top of the
average parameter). Should be one of the following:

	None [default]: Should be left unchanged if your data is not multi-dimensional
multi-class.

	'samplewise': In this case, the statistics are computed separately for each
sample on the N axis, and then averaged over samples.
The computation for each sample is done by treating the flattened extra axes ...
(see Input types) as the N dimension within the sample,
and computing the metric for the sample based on that.

	'global': In this case the N and ... dimensions of the inputs
(see Input types)
are flattened into a new N_X sample axis, i.e. the inputs are treated as if they
were (N_X, C). From here on the average parameter applies as usual.

	ignore_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Integer specifying a target class to ignore. If given, this class index does not contribute
to the returned score, regardless of reduction method. If an index is ignored, and average=None
or 'none', the score for the ignored class will be returned as nan.

	top_k (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of the highest probability or logit score predictions considered finding the correct label,
relevant only for (multi-dimensional) multi-class inputs. The default value (None) will be interpreted
as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

	multiclass (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – Used only in certain special cases, where you want to treat inputs as a different type
than what they appear to be. See the parameter’s
documentation section
for a more detailed explanation and examples.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If average is none of "micro", "macro", "weighted", "none", None.

Example

>>> import torch
>>> from torchmetrics import FBetaScore
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
>>> f_beta = FBetaScore(num_classes=3, beta=0.5)
>>> f_beta(preds, target)
tensor(0.3333)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/f_beta.py#L157-L160]

	Computes f-beta over state.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

Functional Interface

	
torchmetrics.functional.fbeta_score(preds, target, beta=1.0, average='micro', mdmc_average=None, ignore_index=None, num_classes=None, threshold=0.5, top_k=None, multiclass=None)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/f_beta.py#L111-L244]

	Computes f_beta metric.

[image: F_{\beta} = (1 + \beta^2) * \frac{\text{precision} * \text{recall}} {(\beta^2 * \text{precision}) + \text{recall}}]

Works with binary, multiclass, and multilabel data.
Accepts probabilities or logits from a model output or integer class values in prediction.
Works with multi-dimensional preds and target.

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument
to convert into integer labels. This is the case for binary and multi-label logits or probabilities.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

The reduction method (how the precision scores are aggregated) is controlled by the
average parameter, and additionally by the mdmc_average parameter in the
multi-dimensional multi-class case. Accepts all inputs listed in Input types.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model (probabilities, logits or labels)

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth values

	beta (float [https://docs.python.org/3/library/functions.html#float]) – beta coefficient

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines the reduction that is applied. Should be one of the following:

	'micro' [default]: Calculate the metric globally, across all samples and classes.

	'macro': Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).

	'weighted': Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support (tp + fn).

	'none' or None: Calculate the metric for each class separately, and return
the metric for every class.

	'samples': Calculate the metric for each sample, and average the metrics
across samples (with equal weights for each sample).

Note

What is considered a sample in the multi-dimensional multi-class case
depends on the value of mdmc_average.

Note

If 'none' and a given class doesn’t occur in the preds or target,
the value for the class will be nan.

	mdmc_average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines how averaging is done for multi-dimensional multi-class inputs (on top of the
average parameter). Should be one of the following:

	None [default]: Should be left unchanged if your data is not multi-dimensional
multi-class.

	'samplewise': In this case, the statistics are computed separately for each
sample on the N axis, and then averaged over samples.
The computation for each sample is done by treating the flattened extra axes ...
(see Input types) as the N dimension within the sample,
and computing the metric for the sample based on that.

	'global': In this case the N and ... dimensions of the inputs
(see Input types)
are flattened into a new N_X sample axis, i.e. the inputs are treated as if they
were (N_X, C). From here on the average parameter applies as usual.

	ignore_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Integer specifying a target class to ignore. If given, this class index does not contribute
to the returned score, regardless of reduction method. If an index is ignored, and average=None
or 'none', the score for the ignored class will be returned as nan.

	num_classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of classes. Necessary for 'macro', 'weighted' and None average methods.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

	top_k (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of highest probability or logit score predictions considered to find the correct label,
relevant only for (multi-dimensional) multi-class inputs. The
default value (None) will be interpreted as 1 for these inputs.

Should be left at default (None) for all other types of inputs.

	multiclass (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) – Used only in certain special cases, where you want to treat inputs as a different type
than what they appear to be. See the parameter’s
documentation section
for a more detailed explanation and examples.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	The shape of the returned tensor depends on the average parameter

	If average in ['micro', 'macro', 'weighted', 'samples'], a one-element tensor will be returned

	If average in ['none', None], the shape will be (C,), where C stands for the number
of classes

Example

>>> from torchmetrics.functional import fbeta_score
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
>>> fbeta_score(preds, target, num_classes=3, beta=0.5)
tensor(0.3333)

 Hamming Distance

Hamming Distance

Module Interface

	
class torchmetrics.HammingDistance(threshold=0.5, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/hamming.py#L23-L93]

	Computes the average Hamming distance (also known as Hamming loss) between targets and predictions:

[image: \text{Hamming distance} = \frac{1}{N \cdot L}\sum_i^N \sum_l^L 1(y_{il} \neq \hat{y_{il}})]

Where [image: y] is a tensor of target values, [image: \hat{y}] is a tensor of predictions,
and [image: \bullet_{il}] refers to the [image: l]-th label of the [image: i]-th sample of that
tensor.

This is the same as 1-accuracy for binary data, while for all other types of inputs it
treats each possible label separately - meaning that, for example, multi-class data is
treated as if it were multi-label.

Accepts all input types listed in Input types.

	Parameters

	
	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If threshold is not between 0 and 1.

Example

>>> from torchmetrics import HammingDistance
>>> target = torch.tensor([[0, 1], [1, 1]])
>>> preds = torch.tensor([[0, 1], [0, 1]])
>>> hamming_distance = HammingDistance()
>>> hamming_distance(preds, target)
tensor(0.2500)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/hamming.py#L91-L93]

	Computes hamming distance based on inputs passed in to update previously.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/hamming.py#L77-L89]

	Update state with predictions and targets.

See Input types for more information on input types.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model (probabilities, logits or labels)

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth labels

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.hamming_distance(preds, target, threshold=0.5)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/hamming.py#L62-L96]

	Computes the average Hamming distance (also
known as Hamming loss) between targets and predictions:

[image: \text{Hamming distance} = \frac{1}{N \cdot L} \sum_i^N \sum_l^L 1(y_{il} \neq \hat{y}_{il})]

Where [image: y] is a tensor of target values, [image: \hat{y}] is a tensor of predictions,
and [image: \bullet_{il}] refers to the [image: l]-th label of the [image: i]-th sample of that
tensor.

This is the same as 1-accuracy for binary data, while for all other types of inputs it
treats each possible label separately - meaning that, for example, multi-class data is
treated as if it were multi-label.

Accepts all input types listed in Input types.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model (probabilities, logits or labels)

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

Example

>>> from torchmetrics.functional import hamming_distance
>>> target = torch.tensor([[0, 1], [1, 1]])
>>> preds = torch.tensor([[0, 1], [0, 1]])
>>> hamming_distance(preds, target)
tensor(0.2500)

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

 Hinge Loss

Hinge Loss

Module Interface

	
class torchmetrics.HingeLoss(squared=False, multiclass_mode=None, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/hinge.py#L22-L124]

	Computes the mean Hinge loss, typically used for Support Vector Machines (SVMs).

In the binary case it is defined as:

[image: \text{Hinge loss} = \max(0, 1 - y \times \hat{y})]

Where [image: y \in {-1, 1}] is the target, and [image: \hat{y} \in \mathbb{R}] is the prediction.

In the multi-class case, when multiclass_mode=None (default), multiclass_mode=MulticlassMode.CRAMMER_SINGER
or multiclass_mode="crammer-singer", this metric will compute the multi-class hinge loss defined by Crammer and
Singer as:

[image: \text{Hinge loss} = \max\left(0, 1 - \hat{y}_y + \max_{i \ne y} (\hat{y}_i)\right)]

Where [image: y \in {0, ..., \mathrm{C}}] is the target class (where [image: \mathrm{C}] is the number of classes),
and [image: \hat{y} \in \mathbb{R}^\mathrm{C}] is the predicted output per class.

In the multi-class case when multiclass_mode=MulticlassMode.ONE_VS_ALL or multiclass_mode='one-vs-all', this
metric will use a one-vs-all approach to compute the hinge loss, giving a vector of C outputs where each entry pits
that class against all remaining classes.

This metric can optionally output the mean of the squared hinge loss by setting squared=True

Only accepts inputs with preds shape of (N) (binary) or (N, C) (multi-class) and target shape of (N).

	Parameters

	
	squared (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this will compute the squared hinge loss. Otherwise, computes the regular hinge loss (default).

	multiclass_mode (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], MulticlassMode, None [https://docs.python.org/3/library/constants.html#None]]) – Which approach to use for multi-class inputs (has no effect in the binary case). None (default),
MulticlassMode.CRAMMER_SINGER or "crammer-singer", uses the Crammer Singer multi-class hinge loss.
MulticlassMode.ONE_VS_ALL or "one-vs-all" computes the hinge loss in a one-vs-all fashion.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If multiclass_mode is not: None, MulticlassMode.CRAMMER_SINGER, "crammer-singer",
 MulticlassMode.ONE_VS_ALL or "one-vs-all".

	Example (binary case):
	>>> import torch
>>> from torchmetrics import HingeLoss
>>> target = torch.tensor([0, 1, 1])
>>> preds = torch.tensor([-2.2, 2.4, 0.1])
>>> hinge = HingeLoss()
>>> hinge(preds, target)
tensor(0.3000)

	Example (default / multiclass case):
	>>> target = torch.tensor([0, 1, 2])
>>> preds = torch.tensor([[-1.0, 0.9, 0.2], [0.5, -1.1, 0.8], [2.2, -0.5, 0.3]])
>>> hinge = HingeLoss()
>>> hinge(preds, target)
tensor(2.9000)

	Example (multiclass example, one vs all mode):
	>>> target = torch.tensor([0, 1, 2])
>>> preds = torch.tensor([[-1.0, 0.9, 0.2], [0.5, -1.1, 0.8], [2.2, -0.5, 0.3]])
>>> hinge = HingeLoss(multiclass_mode="one-vs-all")
>>> hinge(preds, target)
tensor([2.2333, 1.5000, 1.2333])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/hinge.py#L123-L124]

	Override this method to compute the final metric value from state variables synchronized across the
distributed backend.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	
update(preds, target)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/hinge.py#L117-L121]

	Override this method to update the state variables of your metric class.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Functional Interface

	
torchmetrics.functional.hinge_loss(preds, target, squared=False, multiclass_mode=None)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/hinge.py#L157-L231]

	Computes the mean Hinge loss typically used for Support Vector Machines (SVMs).

In the binary case it is defined as:

[image: \text{Hinge loss} = \max(0, 1 - y \times \hat{y})]

Where [image: y \in {-1, 1}] is the target, and [image: \hat{y} \in \mathbb{R}] is the prediction.

In the multi-class case, when multiclass_mode=None (default), multiclass_mode=MulticlassMode.CRAMMER_SINGER
or multiclass_mode="crammer-singer", this metric will compute the multi-class hinge loss defined by Crammer and
Singer as:

[image: \text{Hinge loss} = \max\left(0, 1 - \hat{y}_y + \max_{i \ne y} (\hat{y}_i)\right)]

Where [image: y \in {0, ..., \mathrm{C}}] is the target class (where [image: \mathrm{C}] is the number of classes),
and [image: \hat{y} \in \mathbb{R}^\mathrm{C}] is the predicted output per class.

In the multi-class case when multiclass_mode=MulticlassMode.ONE_VS_ALL or multiclass_mode='one-vs-all', this
metric will use a one-vs-all approach to compute the hinge loss, giving a vector of C outputs where each entry pits
that class against all remaining classes.

This metric can optionally output the mean of the squared hinge loss by setting squared=True

Only accepts inputs with preds shape of (N) (binary) or (N, C) (multi-class) and target shape of (N).

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Predictions from model (as float outputs from decision function).

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – Ground truth labels.

	squared (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this will compute the squared hinge loss. Otherwise, computes the regular hinge loss (default).

	multiclass_mode (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], MulticlassMode, None [https://docs.python.org/3/library/constants.html#None]]) – Which approach to use for multi-class inputs (has no effect in the binary case). None (default),
MulticlassMode.CRAMMER_SINGER or "crammer-singer", uses the Crammer Singer multi-class hinge loss.
MulticlassMode.ONE_VS_ALL or "one-vs-all" computes the hinge loss in a one-vs-all fashion.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If preds shape is not of size (N) or (N, C).

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If target shape is not of size (N).

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If multiclass_mode is not: None, MulticlassMode.CRAMMER_SINGER, "crammer-singer",
 MulticlassMode.ONE_VS_ALL or "one-vs-all".

	Example (binary case):
	>>> import torch
>>> from torchmetrics.functional import hinge_loss
>>> target = torch.tensor([0, 1, 1])
>>> preds = torch.tensor([-2.2, 2.4, 0.1])
>>> hinge_loss(preds, target)
tensor(0.3000)

	Example (default / multiclass case):
	>>> target = torch.tensor([0, 1, 2])
>>> preds = torch.tensor([[-1.0, 0.9, 0.2], [0.5, -1.1, 0.8], [2.2, -0.5, 0.3]])
>>> hinge_loss(preds, target)
tensor(2.9000)

	Example (multiclass example, one vs all mode):
	>>> target = torch.tensor([0, 1, 2])
>>> preds = torch.tensor([[-1.0, 0.9, 0.2], [0.5, -1.1, 0.8], [2.2, -0.5, 0.3]])
>>> hinge_loss(preds, target, multiclass_mode="one-vs-all")
tensor([2.2333, 1.5000, 1.2333])

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

 Jaccard Index

Jaccard Index

Module Interface

	
class torchmetrics.JaccardIndex(num_classes, average='macro', ignore_index=None, absent_score=0.0, threshold=0.5, multilabel=False, **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/jaccard.py#L23-L128]

	Computes Intersection over union, or Jaccard index:

[image: J(A,B) = \frac{|A\cap B|}{|A\cup B|}]

Where: [image: A] and [image: B] are both tensors of the same size, containing integer class values.
They may be subject to conversion from input data (see description below). Note that it is different from box IoU.

Works with binary, multiclass and multi-label data.
Accepts probabilities from a model output or integer class values in prediction.
Works with multi-dimensional preds and target.

Forward accepts

	preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

	target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument
to convert into integer labels. This is the case for binary and multi-label probabilities.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

	Parameters

	
	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – Number of classes in the dataset.

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines the reduction that is applied. Should be one of the following:

	'macro' [default]: Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).

	'micro': Calculate the metric globally, across all samples and classes.

	'weighted': Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support (tp + fn).

	'none' or None: Calculate the metric for each class separately, and return
the metric for every class. Note that if a given class doesn’t occur in the
preds or target, the value for the class will be nan.

	ignore_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – optional int specifying a target class to ignore. If given, this class index does not contribute
to the returned score, regardless of reduction method. Has no effect if given an int that is not in the
range [0, num_classes-1]. By default, no index is ignored, and all classes are used.

	absent_score (float [https://docs.python.org/3/library/functions.html#float]) – score to use for an individual class, if no instances of the class index were present in
preds AND no instances of the class index were present in target. For example, if we have 3 classes,
[0, 0] for preds, and [0, 2] for target, then class 1 would be assigned the absent_score.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold value for binary or multi-label probabilities.

	multilabel (bool [https://docs.python.org/3/library/functions.html#bool]) – determines if data is multilabel or not.

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> from torchmetrics import JaccardIndex
>>> target = torch.randint(0, 2, (10, 25, 25))
>>> pred = torch.tensor(target)
>>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15]
>>> jaccard = JaccardIndex(num_classes=2)
>>> jaccard(pred, target)
tensor(0.9660)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

	
compute()[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/jaccard.py#L105-L128]

	Computes intersection over union (IoU)

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

Functional Interface

	
torchmetrics.functional.jaccard_index(preds, target, num_classes, average='macro', ignore_index=None, absent_score=0.0, threshold=0.5)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/functional/classification/jaccard.py#L94-L164]

	Computes Jaccard index

[image: J(A,B) = \frac{|A\cap B|}{|A\cup B|}]

Where: [image: A] and [image: B] are both tensors of the same size,
containing integer class values. They may be subject to conversion from
input data (see description below).

Note that it is different from box IoU.

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument
to convert into integer labels. This is the case for binary and multi-label probabilities.

If pred has an extra dimension as in the case of multi-class scores we
perform an argmax on dim=1.

	Parameters

	
	preds (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – tensor containing predictions from model (probabilities, or labels) with shape [N, d1, d2, ...]

	target (Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – tensor containing ground truth labels with shape [N, d1, d2, ...]

	num_classes (int [https://docs.python.org/3/library/functions.html#int]) – Specify the number of classes

	average (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Defines the reduction that is applied. Should be one of the following:

	'macro' [default]: Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).

	'micro': Calculate the metric globally, across all samples and classes.

	'weighted': Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support (tp + fn).

	'none' or None: Calculate the metric for each class separately, and return
the metric for every class. Note that if a given class doesn’t occur in the
preds or target, the value for the class will be nan.

	ignore_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – optional int specifying a target class to ignore. If given,
this class index does not contribute to the returned score, regardless
of reduction method. Has no effect if given an int that is not in the
range [0, num_classes-1], where num_classes is either given or derived
from pred and target. By default, no index is ignored, and all classes are used.

	absent_score (float [https://docs.python.org/3/library/functions.html#float]) – score to use for an individual class, if no instances of
the class index were present in preds AND no instances of the class
index were present in target. For example, if we have 3 classes,
[0, 0] for preds, and [0, 2] for target, then class 1 would be
assigned the absent_score.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold value for binary or multi-label probabilities.

	Return type

	Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]

	Returns

	The shape of the returned tensor depends on the average parameter

	If average in ['micro', 'macro', 'weighted'], a one-element tensor will be returned

	If average in ['none', None], the shape will be (C,), where C stands for the number
of classes

Example

>>> from torchmetrics.functional import jaccard_index
>>> target = torch.randint(0, 2, (10, 25, 25))
>>> pred = torch.tensor(target)
>>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15]
>>> jaccard_index(pred, target, num_classes=2)
tensor(0.9660)

 KL Divergence

KL Divergence

Module Interface

	
class torchmetrics.KLDivergence(log_prob=False, reduction='mean', **kwargs)[source] [https://github.com/Lightning-AI/metrics/blob/v0.9.3/torchmetrics/classification/kl_divergence.py#L25-L105]

	Computes the KL divergence:

[image: D_{KL}(P||Q) = \sum_{x\in\mathcal{X}} P(x) \log\frac{P(x)}{Q{x}}]

Where [image: P] and [image: Q] are probability distributions where [image: P] usually represents a distribution
over data and [image: Q] is often a prior or approximation of [image: P]. It should be noted that the KL divergence
is a non-symetrical metric i.e. [image: D_{KL}(P||Q) \neq D_{KL}(Q||P)].

	Parameters

	
	p – data distribution with shape [N, d]

	q – prior or approximate distribution with shape [N, d]

	log_prob (bool [https://docs.python.org/3/library/functions.html#bool]) – bool indicating if input is log-probabilities or probabilities. If given as probabilities,
will normalize to make sure the distributes sum to 1.

	reduction (L