Minimum¶
Module Interface¶
- class torchmetrics.MinMetric(nan_strategy='warn', **kwargs)[source]
Aggregate a stream of value into their minimum value.
As input to
forward
andupdate
the metric accepts the following inputAs output of forward and compute the metric returns the following output
agg
(Tensor
): scalar float tensor with aggregated minimum value over all inputs received
- Parameters
nan_strategy¶ (
Union
[str
,float
]) – options: -'error'
: if any nan values are encounted will give a RuntimeError -'warn'
: if any nan values are encounted will give a warning and continue -'ignore'
: all nan values are silently removed - a float: if a float is provided will impude any nan values with this valuekwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Raises
ValueError – If
nan_strategy
is not one oferror
,warn
,ignore
or a float
Example
>>> from torch import tensor >>> from torchmetrics.aggregation import MinMetric >>> metric = MinMetric() >>> metric.update(1) >>> metric.update(tensor([2, 3])) >>> metric.compute() tensor(1.)
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- plot(val=None, ax=None)[source]
Plot a single or multiple values from the metric.
- Parameters
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type
- Returns
Figure and Axes object
- Raises
ModuleNotFoundError – If matplotlib is not installed
>>> # Example plotting a single value >>> from torchmetrics.aggregation import MinMetric >>> metric = MinMetric() >>> metric.update([1, 2, 3]) >>> fig_, ax_ = metric.plot()
(
Source code
,png
,hires.png
,pdf
)>>> # Example plotting multiple values >>> from torchmetrics.aggregation import MinMetric >>> metric = MinMetric() >>> values = [ ] >>> for i in range(10): ... values.append(metric(i)) >>> fig_, ax_ = metric.plot(values)
(
Source code
,png
,hires.png
,pdf
)