Shortcuts

Label Ranking Loss

Module Interface

class torchmetrics.classification.MultilabelRankingLoss(num_labels, ignore_index=None, validate_args=True, **kwargs)[source]

Compute the label ranking loss for multilabel data [1]. The score is corresponds to the average number of label pairs that are incorrectly ordered given some predictions weighted by the size of the label set and the number of labels not in the label set. The best score is 0.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): A float tensor of shape (N, C, ...). Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.

  • target (Tensor): An int tensor of shape (N, C, ...). Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified).

Note

Additional dimension ... will be flattened into the batch dimension.

As output to forward and compute the metric returns the following output:

  • mlrl (Tensor): A tensor containing the multilabel ranking loss.

Parameters
  • preds – Tensor with predictions

  • target – Tensor with true labels

  • num_labels (int) – Integer specifing the number of labels

  • ignore_index (Optional[int]) – Specifies a target value that is ignored and does not contribute to the metric calculation

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

Example

>>> from torchmetrics.classification import MultilabelRankingLoss
>>> _ = torch.manual_seed(42)
>>> preds = torch.rand(10, 5)
>>> target = torch.randint(2, (10, 5))
>>> mlrl = MultilabelRankingLoss(num_labels=5)
>>> mlrl(preds, target)
tensor(0.4167)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Functional Interface

torchmetrics.functional.classification.multilabel_ranking_loss(preds, target, num_labels, ignore_index=None, validate_args=True)[source]

Compute the label ranking loss for multilabel data [1]. The score is corresponds to the average number of label pairs that are incorrectly ordered given some predictions weighted by the size of the label set and the number of labels not in the label set. The best score is 0.

Accepts the following input tensors:

  • preds (float tensor): (N, C, ...). Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.

  • target (int tensor): (N, C, ...). Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified).

Additional dimension ... will be flattened into the batch dimension.

Parameters
  • preds (Tensor) – Tensor with predictions

  • target (Tensor) – Tensor with true labels

  • num_labels (int) – Integer specifing the number of labels

  • ignore_index (Optional[int]) – Specifies a target value that is ignored and does not contribute to the metric calculation

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

Example

>>> from torchmetrics.functional.classification import multilabel_ranking_loss
>>> _ = torch.manual_seed(42)
>>> preds = torch.rand(10, 5)
>>> target = torch.randint(2, (10, 5))
>>> multilabel_ranking_loss(preds, target, num_labels=5)
tensor(0.4167)

References

[1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US.

Return type

Tensor

Read the Docs v: latest
Versions
latest
stable
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.