Precision Recall Curve¶
Module Interface¶
- class torchmetrics.PrecisionRecallCurve(task: typing_extensions.Literal[binary, multiclass, multilabel], thresholds: Optional[Union[int, List[float], torch.Tensor]] = None, num_classes: Optional[int] = None, num_labels: Optional[int] = None, ignore_index: Optional[int] = None, validate_args: bool = True, **kwargs: Any)[source]
Compute the precision-recall curve.
The curve consist of multiple pairs of precision and recall values evaluated at different thresholds, such that the tradeoff between the two values can been seen.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
task
argument to either'binary'
,'multiclass'
ormultilabel
. See the documentation ofBinaryPrecisionRecallCurve
,MulticlassPrecisionRecallCurve
andMultilabelPrecisionRecallCurve
for the specific details of each argument influence and examples.- Legacy Example:
>>> pred = torch.tensor([0, 0.1, 0.8, 0.4]) >>> target = torch.tensor([0, 1, 1, 0]) >>> pr_curve = PrecisionRecallCurve(task="binary") >>> precision, recall, thresholds = pr_curve(pred, target) >>> precision tensor([0.5000, 0.6667, 0.5000, 1.0000, 1.0000]) >>> recall tensor([1.0000, 1.0000, 0.5000, 0.5000, 0.0000]) >>> thresholds tensor([0.0000, 0.1000, 0.4000, 0.8000])
>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05], ... [0.05, 0.75, 0.05, 0.05, 0.05], ... [0.05, 0.05, 0.75, 0.05, 0.05], ... [0.05, 0.05, 0.05, 0.75, 0.05]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> pr_curve = PrecisionRecallCurve(task="multiclass", num_classes=5) >>> precision, recall, thresholds = pr_curve(pred, target) >>> precision [tensor([0.2500, 1.0000, 1.0000]), tensor([0.2500, 1.0000, 1.0000]), tensor([0.2500, 0.0000, 1.0000]), tensor([0.2500, 0.0000, 1.0000]), tensor([0., 1.])] >>> recall [tensor([1., 1., 0.]), tensor([1., 1., 0.]), tensor([1., 0., 0.]), tensor([1., 0., 0.]), tensor([nan, 0.])] >>> thresholds [tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor(0.0500)]
Initialize task metric.
BinaryPrecisionRecallCurve¶
- class torchmetrics.classification.BinaryPrecisionRecallCurve(thresholds=None, ignore_index=None, validate_args=True, **kwargs)[source]
Compute the precision-recall curve for binary tasks.
The curve consist of multiple pairs of precision and recall values evaluated at different thresholds, such that the tradeoff between the two values can been seen.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): A float tensor of shape(N, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.target
(Tensor
): An int tensor of shape(N, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified). The value 1 always encodes the positive class.
Note
Additional dimension
...
will be flattened into the batch dimension.As output to
forward
andcompute
the metric returns the following output:precision
(Tensor
): if thresholds=None a list for each class is returned with an 1d tensor of size(n_thresholds+1, )
with precision values (length may differ between classes). If thresholds is set to something else, then a single 2d tensor of size(n_classes, n_thresholds+1)
with precision values is returned.recall
(Tensor
): if thresholds=None a list for each class is returned with an 1d tensor of size(n_thresholds+1, )
with recall values (length may differ between classes). If thresholds is set to something else, then a single 2d tensor of size(n_classes, n_thresholds+1)
with recall values is returned.thresholds
(Tensor
): if thresholds=None a list for each class is returned with an 1d tensor of size(n_thresholds, )
with increasing threshold values (length may differ between classes). If threshold is set to something else, then a single 1d tensor of size(n_thresholds, )
is returned with shared threshold values for all classes.
Note
The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size (constant memory).
- Parameters
thresholds¶ (
Union
[int
,List
[float
],Tensor
,None
]) –Can be one of:
If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.
If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.
If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation
If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.
validate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
Example
>>> from torchmetrics.classification import BinaryPrecisionRecallCurve >>> preds = torch.tensor([0, 0.5, 0.7, 0.8]) >>> target = torch.tensor([0, 1, 1, 0]) >>> bprc = BinaryPrecisionRecallCurve(thresholds=None) >>> bprc(preds, target) (tensor([0.5000, 0.6667, 0.5000, 0.0000, 1.0000]), tensor([1.0000, 1.0000, 0.5000, 0.0000, 0.0000]), tensor([0.0000, 0.5000, 0.7000, 0.8000])) >>> bprc = BinaryPrecisionRecallCurve(thresholds=5) >>> bprc(preds, target) (tensor([0.5000, 0.6667, 0.6667, 0.0000, 0.0000, 1.0000]), tensor([1., 1., 1., 0., 0., 0.]), tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000]))
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- plot(curve=None, score=None, ax=None)[source]
Plot a single curve from the metric.
- Parameters
curve¶ (
Optional
[Tuple
[Tensor
,Tensor
,Tensor
]]) – the output of either metric.compute or metric.forward. If no value is provided, will automatically call metric.compute and plot that result.score¶ (
Union
[Tensor
,bool
,None
]) – Provide a area-under-the-curve score to be displayed on the plot. If True and no curve is provided, will automatically compute the score.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type
- Returns
Figure and Axes object
- Raises
ModuleNotFoundError – If matplotlib is not installed
>>> from torch import randn, randint >>> import torch.nn.functional as F >>> from torchmetrics.classification import BinaryROC >>> preds = F.softmax(randn(20, 2), dim=1) >>> target = randint(2, (20,)) >>> metric = BinaryROC() >>> metric.update(preds[:, 1], target) >>> fig_, ax_ = metric.plot()
(
Source code
,png
,hires.png
,pdf
)
MulticlassPrecisionRecallCurve¶
- class torchmetrics.classification.MulticlassPrecisionRecallCurve(num_classes, thresholds=None, ignore_index=None, validate_args=True, **kwargs)[source]
Compute the precision-recall curve for multiclass tasks.
The curve consist of multiple pairs of precision and recall values evaluated at different thresholds, such that the tradeoff between the two values can been seen.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): A float tensor of shape(N, C, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply softmax per sample.target
(Tensor
): An int tensor of shape(N, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain values in the [0, n_classes-1] range (except if ignore_index is specified).
Note
Additional dimension
...
will be flattened into the batch dimension.As output to
forward
andcompute
the metric returns the following output:precision
(Tensor
): A 1d tensor of size(n_thresholds+1, )
with precision valuesrecall
(Tensor
): A 1d tensor of size(n_thresholds+1, )
with recall valuesthresholds
(Tensor
): A 1d tensor of size(n_thresholds, )
with increasing threshold values
Note
The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size (constant memory).
- Parameters
num_classes¶ (
int
) – Integer specifing the number of classesthresholds¶ (
Union
[int
,List
[float
],Tensor
,None
]) –Can be one of:
If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.
If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.
If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation
If set to a 1D tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.
validate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
Example
>>> from torchmetrics.classification import MulticlassPrecisionRecallCurve >>> preds = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05], ... [0.05, 0.75, 0.05, 0.05, 0.05], ... [0.05, 0.05, 0.75, 0.05, 0.05], ... [0.05, 0.05, 0.05, 0.75, 0.05]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> mcprc = MulticlassPrecisionRecallCurve(num_classes=5, thresholds=None) >>> precision, recall, thresholds = mcprc(preds, target) >>> precision [tensor([0.2500, 1.0000, 1.0000]), tensor([0.2500, 1.0000, 1.0000]), tensor([0.2500, 0.0000, 1.0000]), tensor([0.2500, 0.0000, 1.0000]), tensor([0., 1.])] >>> recall [tensor([1., 1., 0.]), tensor([1., 1., 0.]), tensor([1., 0., 0.]), tensor([1., 0., 0.]), tensor([nan, 0.])] >>> thresholds [tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor(0.0500)] >>> mcprc = MulticlassPrecisionRecallCurve(num_classes=5, thresholds=5) >>> mcprc(preds, target) (tensor([[0.2500, 1.0000, 1.0000, 1.0000, 0.0000, 1.0000], [0.2500, 1.0000, 1.0000, 1.0000, 0.0000, 1.0000], [0.2500, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000], [0.2500, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000]]), tensor([[1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 0., 0.], [1., 0., 0., 0., 0., 0.], [1., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.]]), tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000]))
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- plot(curve=None, score=None, ax=None)[source]
Plot a single or multiple values from the metric.
- Parameters
curve¶ (
Union
[Tuple
[Tensor
,Tensor
,Tensor
],Tuple
[List
[Tensor
],List
[Tensor
],List
[Tensor
]],None
]) – the output of either metric.compute or metric.forward. If no value is provided, will automatically call metric.compute and plot that result.score¶ (
Union
[Tensor
,bool
,None
]) – Provide a area-under-the-curve score to be displayed on the plot. If True and no curve is provided, will automatically compute the score.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type
- Returns
Figure and Axes object
- Raises
ModuleNotFoundError – If matplotlib is not installed
>>> from torch import randn, randint >>> import torch.nn.functional as F >>> from torchmetrics.classification import BinaryROC >>> preds = F.softmax(randn(20, 2), dim=1) >>> target = randint(2, (20,)) >>> metric = BinaryROC() >>> metric.update(preds[:, 1], target) >>> fig_, ax_ = metric.plot()
(
Source code
,png
,hires.png
,pdf
)
MultilabelPrecisionRecallCurve¶
- class torchmetrics.classification.MultilabelPrecisionRecallCurve(num_labels, thresholds=None, ignore_index=None, validate_args=True, **kwargs)[source]
Compute the precision-recall curve for multilabel tasks.
The curve consist of multiple pairs of precision and recall values evaluated at different thresholds, such that the tradeoff between the two values can been seen.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): A float tensor of shape(N, C, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.target
(Tensor
): An int tensor of shape(N, C, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified).
Note
Additional dimension
...
will be flattened into the batch dimension.As output to
forward
andcompute
the metric returns the following a tuple of either 3 tensors or 3 lists containing:precision
(Tensor
orList
): if thresholds=None a list for each label is returned with an 1d tensor of size(n_thresholds+1, )
with precision values (length may differ between labels). If thresholds is set to something else, then a single 2d tensor of size(n_labels, n_thresholds+1)
with precision values is returned.recall
(Tensor
orList
): if thresholds=None a list for each label is returned with an 1d tensor of size(n_thresholds+1, )
with recall values (length may differ between labels). If thresholds is set to something else, then a single 2d tensor of size(n_labels, n_thresholds+1)
with recall values is returned.thresholds
(Tensor
orList
): if thresholds=None a list for each label is returned with an 1d tensor of size(n_thresholds, )
with increasing threshold values (length may differ between labels). If threshold is set to something else, then a single 1d tensor of size(n_thresholds, )
is returned with shared threshold values for all labels.
Note
The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size (constant memory).
- Parameters
preds¶ – Tensor with predictions
target¶ – Tensor with true labels
thresholds¶ (
Union
[int
,List
[float
],Tensor
,None
]) –Can be one of:
If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.
If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.
If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation
If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.
validate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
Example
>>> from torchmetrics.classification import MultilabelPrecisionRecallCurve >>> preds = torch.tensor([[0.75, 0.05, 0.35], ... [0.45, 0.75, 0.05], ... [0.05, 0.55, 0.75], ... [0.05, 0.65, 0.05]]) >>> target = torch.tensor([[1, 0, 1], ... [0, 0, 0], ... [0, 1, 1], ... [1, 1, 1]]) >>> mlprc = MultilabelPrecisionRecallCurve(num_labels=3, thresholds=None) >>> precision, recall, thresholds = mlprc(preds, target) >>> precision [tensor([0.5000, 0.5000, 1.0000, 1.0000]), tensor([0.5000, 0.6667, 0.5000, 0.0000, 1.0000]), tensor([0.7500, 1.0000, 1.0000, 1.0000])] >>> recall [tensor([1.0000, 0.5000, 0.5000, 0.0000]), tensor([1.0000, 1.0000, 0.5000, 0.0000, 0.0000]), tensor([1.0000, 0.6667, 0.3333, 0.0000])] >>> thresholds [tensor([0.0500, 0.4500, 0.7500]), tensor([0.0500, 0.5500, 0.6500, 0.7500]), tensor([0.0500, 0.3500, 0.7500])] >>> mlprc = MultilabelPrecisionRecallCurve(num_labels=3, thresholds=5) >>> mlprc(preds, target) (tensor([[0.5000, 0.5000, 1.0000, 1.0000, 0.0000, 1.0000], [0.5000, 0.6667, 0.6667, 0.0000, 0.0000, 1.0000], [0.7500, 1.0000, 1.0000, 1.0000, 0.0000, 1.0000]]), tensor([[1.0000, 0.5000, 0.5000, 0.5000, 0.0000, 0.0000], [1.0000, 1.0000, 1.0000, 0.0000, 0.0000, 0.0000], [1.0000, 0.6667, 0.3333, 0.3333, 0.0000, 0.0000]]), tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000]))
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- plot(curve=None, score=None, ax=None)[source]
Plot a single or multiple values from the metric.
- Parameters
curve¶ (
Union
[Tuple
[Tensor
,Tensor
,Tensor
],Tuple
[List
[Tensor
],List
[Tensor
],List
[Tensor
]],None
]) – the output of either metric.compute or metric.forward. If no value is provided, will automatically call metric.compute and plot that result.score¶ (
Union
[Tensor
,bool
,None
]) – Provide a area-under-the-curve score to be displayed on the plot. If True and no curve is provided, will automatically compute the score.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type
- Returns
Figure and Axes object
- Raises
ModuleNotFoundError – If matplotlib is not installed
>>> from torch import randn, randint >>> import torch.nn.functional as F >>> from torchmetrics.classification import BinaryROC >>> preds = F.softmax(randn(20, 2), dim=1) >>> target = randint(2, (20,)) >>> metric = BinaryROC() >>> metric.update(preds[:, 1], target) >>> fig_, ax_ = metric.plot()
(
Source code
,png
,hires.png
,pdf
)
Functional Interface¶
- torchmetrics.functional.precision_recall_curve(preds, target, task, thresholds=None, num_classes=None, num_labels=None, ignore_index=None, validate_args=True)[source]
Compute the precision-recall curve.
The curve consist of multiple pairs of precision and recall values evaluated at different thresholds, such that the tradeoff between the two values can been seen.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
task
argument to either'binary'
,'multiclass'
ormultilabel
. See the documentation ofbinary_precision_recall_curve()
,multiclass_precision_recall_curve()
andmultilabel_precision_recall_curve()
for the specific details of each argument influence and examples.- Legacy Example:
>>> pred = torch.tensor([0, 0.1, 0.8, 0.4]) >>> target = torch.tensor([0, 1, 1, 0]) >>> precision, recall, thresholds = precision_recall_curve(pred, target, task='binary') >>> precision tensor([0.5000, 0.6667, 0.5000, 1.0000, 1.0000]) >>> recall tensor([1.0000, 1.0000, 0.5000, 0.5000, 0.0000]) >>> thresholds tensor([0.0000, 0.1000, 0.4000, 0.8000])
>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05], ... [0.05, 0.75, 0.05, 0.05, 0.05], ... [0.05, 0.05, 0.75, 0.05, 0.05], ... [0.05, 0.05, 0.05, 0.75, 0.05]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> precision, recall, thresholds = precision_recall_curve(pred, target, task='multiclass', num_classes=5) >>> precision [tensor([0.2500, 1.0000, 1.0000]), tensor([0.2500, 1.0000, 1.0000]), tensor([0.2500, 0.0000, 1.0000]), tensor([0.2500, 0.0000, 1.0000]), tensor([0., 1.])] >>> recall [tensor([1., 1., 0.]), tensor([1., 1., 0.]), tensor([1., 0., 0.]), tensor([1., 0., 0.]), tensor([nan, 0.])] >>> thresholds [tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500])]
binary_precision_recall_curve¶
- torchmetrics.functional.classification.binary_precision_recall_curve(preds, target, thresholds=None, ignore_index=None, validate_args=True)[source]
Compute the precision-recall curve for binary tasks.
The curve consist of multiple pairs of precision and recall values evaluated at different thresholds, such that the tradeoff between the two values can been seen.
Accepts the following input tensors:
preds
(float tensor):(N, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.target
(int tensor):(N, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified). The value 1 always encodes the positive class.
Additional dimension
...
will be flattened into the batch dimension.The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size (constant memory).
- Parameters
thresholds¶ (
Union
[int
,List
[float
],Tensor
,None
]) –Can be one of:
If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.
If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.
If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation
If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Returns
a tuple of 3 tensors containing:
precision: an 1d tensor of size (n_thresholds+1, ) with precision values
recall: an 1d tensor of size (n_thresholds+1, ) with recall values
thresholds: an 1d tensor of size (n_thresholds, ) with increasing threshold values
- Return type
(tuple)
Example
>>> from torchmetrics.functional.classification import binary_precision_recall_curve >>> preds = torch.tensor([0, 0.5, 0.7, 0.8]) >>> target = torch.tensor([0, 1, 1, 0]) >>> binary_precision_recall_curve(preds, target, thresholds=None) (tensor([0.5000, 0.6667, 0.5000, 0.0000, 1.0000]), tensor([1.0000, 1.0000, 0.5000, 0.0000, 0.0000]), tensor([0.0000, 0.5000, 0.7000, 0.8000])) >>> binary_precision_recall_curve(preds, target, thresholds=5) (tensor([0.5000, 0.6667, 0.6667, 0.0000, 0.0000, 1.0000]), tensor([1., 1., 1., 0., 0., 0.]), tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000]))
multiclass_precision_recall_curve¶
- torchmetrics.functional.classification.multiclass_precision_recall_curve(preds, target, num_classes, thresholds=None, ignore_index=None, validate_args=True)[source]
Compute the precision-recall curve for multiclass tasks.
The curve consist of multiple pairs of precision and recall values evaluated at different thresholds, such that the tradeoff between the two values can been seen.
Accepts the following input tensors:
preds
(float tensor):(N, C, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply softmax per sample.target
(int tensor):(N, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain values in the [0, n_classes-1] range (except if ignore_index is specified).
Additional dimension
...
will be flattened into the batch dimension.The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size (constant memory).
- Parameters
num_classes¶ (
int
) – Integer specifing the number of classesthresholds¶ (
Union
[int
,List
[float
],Tensor
,None
]) –Can be one of:
If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.
If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.
If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation
If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Returns
a tuple of either 3 tensors or 3 lists containing
precision: if thresholds=None a list for each class is returned with an 1d tensor of size (n_thresholds+1, ) with precision values (length may differ between classes). If thresholds is set to something else, then a single 2d tensor of size (n_classes, n_thresholds+1) with precision values is returned.
recall: if thresholds=None a list for each class is returned with an 1d tensor of size (n_thresholds+1, ) with recall values (length may differ between classes). If thresholds is set to something else, then a single 2d tensor of size (n_classes, n_thresholds+1) with recall values is returned.
thresholds: if thresholds=None a list for each class is returned with an 1d tensor of size (n_thresholds, ) with increasing threshold values (length may differ between classes). If threshold is set to something else, then a single 1d tensor of size (n_thresholds, ) is returned with shared threshold values for all classes.
- Return type
(tuple)
Example
>>> from torchmetrics.functional.classification import multiclass_precision_recall_curve >>> preds = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05], ... [0.05, 0.75, 0.05, 0.05, 0.05], ... [0.05, 0.05, 0.75, 0.05, 0.05], ... [0.05, 0.05, 0.05, 0.75, 0.05]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> precision, recall, thresholds = multiclass_precision_recall_curve( ... preds, target, num_classes=5, thresholds=None ... ) >>> precision [tensor([0.2500, 1.0000, 1.0000]), tensor([0.2500, 1.0000, 1.0000]), tensor([0.2500, 0.0000, 1.0000]), tensor([0.2500, 0.0000, 1.0000]), tensor([0., 1.])] >>> recall [tensor([1., 1., 0.]), tensor([1., 1., 0.]), tensor([1., 0., 0.]), tensor([1., 0., 0.]), tensor([nan, 0.])] >>> thresholds [tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500])] >>> multiclass_precision_recall_curve( ... preds, target, num_classes=5, thresholds=5 ... ) (tensor([[0.2500, 1.0000, 1.0000, 1.0000, 0.0000, 1.0000], [0.2500, 1.0000, 1.0000, 1.0000, 0.0000, 1.0000], [0.2500, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000], [0.2500, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000], [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000]]), tensor([[1., 1., 1., 1., 0., 0.], [1., 1., 1., 1., 0., 0.], [1., 0., 0., 0., 0., 0.], [1., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.]]), tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000]))
multilabel_precision_recall_curve¶
- torchmetrics.functional.classification.multilabel_precision_recall_curve(preds, target, num_labels, thresholds=None, ignore_index=None, validate_args=True)[source]
Compute the precision-recall curve for multilabel tasks.
The curve consist of multiple pairs of precision and recall values evaluated at different thresholds, such that the tradeoff between the two values can been seen.
Accepts the following input tensors:
preds
(float tensor):(N, C, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.target
(int tensor):(N, C, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified).
Additional dimension
...
will be flattened into the batch dimension.The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size (constant memory).
- Parameters
thresholds¶ (
Union
[int
,List
[float
],Tensor
,None
]) –Can be one of:
If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.
If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.
If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation
If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Returns
a tuple of either 3 tensors or 3 lists containing
precision: if thresholds=None a list for each label is returned with an 1d tensor of size (n_thresholds+1, ) with precision values (length may differ between labels). If thresholds is set to something else, then a single 2d tensor of size (n_labels, n_thresholds+1) with precision values is returned.
recall: if thresholds=None a list for each label is returned with an 1d tensor of size (n_thresholds+1, ) with recall values (length may differ between labels). If thresholds is set to something else, then a single 2d tensor of size (n_labels, n_thresholds+1) with recall values is returned.
thresholds: if thresholds=None a list for each label is returned with an 1d tensor of size (n_thresholds, ) with increasing threshold values (length may differ between labels). If threshold is set to something else, then a single 1d tensor of size (n_thresholds, ) is returned with shared threshold values for all labels.
- Return type
(tuple)
Example
>>> from torchmetrics.functional.classification import multilabel_precision_recall_curve >>> preds = torch.tensor([[0.75, 0.05, 0.35], ... [0.45, 0.75, 0.05], ... [0.05, 0.55, 0.75], ... [0.05, 0.65, 0.05]]) >>> target = torch.tensor([[1, 0, 1], ... [0, 0, 0], ... [0, 1, 1], ... [1, 1, 1]]) >>> precision, recall, thresholds = multilabel_precision_recall_curve( ... preds, target, num_labels=3, thresholds=None ... ) >>> precision [tensor([0.5000, 0.5000, 1.0000, 1.0000]), tensor([0.5000, 0.6667, 0.5000, 0.0000, 1.0000]), tensor([0.7500, 1.0000, 1.0000, 1.0000])] >>> recall [tensor([1.0000, 0.5000, 0.5000, 0.0000]), tensor([1.0000, 1.0000, 0.5000, 0.0000, 0.0000]), tensor([1.0000, 0.6667, 0.3333, 0.0000])] >>> thresholds [tensor([0.0500, 0.4500, 0.7500]), tensor([0.0500, 0.5500, 0.6500, 0.7500]), tensor([0.0500, 0.3500, 0.7500])] >>> multilabel_precision_recall_curve( ... preds, target, num_labels=3, thresholds=5 ... ) (tensor([[0.5000, 0.5000, 1.0000, 1.0000, 0.0000, 1.0000], [0.5000, 0.6667, 0.6667, 0.0000, 0.0000, 1.0000], [0.7500, 1.0000, 1.0000, 1.0000, 0.0000, 1.0000]]), tensor([[1.0000, 0.5000, 0.5000, 0.5000, 0.0000, 0.0000], [1.0000, 1.0000, 1.0000, 0.0000, 0.0000, 0.0000], [1.0000, 0.6667, 0.3333, 0.3333, 0.0000, 0.0000]]), tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000]))