Shortcuts

Recall At Fixed Precision

Module Interface

BinaryRecallAtFixedPrecision

class torchmetrics.classification.BinaryRecallAtFixedPrecision(min_precision, thresholds=None, ignore_index=None, validate_args=True, **kwargs)[source]

Computes the higest possible recall value given the minimum precision thresholds provided. This is done by first calculating the precision-recall curve for different thresholds and the find the recall for a given precision level.

Accepts the following input tensors:

  • preds (float tensor): (N, ...). Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.

  • target (int tensor): (N, ...). Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified).

Additional dimension ... will be flattened into the batch dimension.

The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size \mathcal{O}(n_{samples}) whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size \mathcal{O}(n_{thresholds}) (constant memory).

Parameters
  • min_precision (float) – float value specifying minimum precision threshold.

  • thresholds (Union[int, List[float], Tensor, None]) –

    Can be one of:

    • If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.

    • If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.

    • If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation

    • If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Returns

a tuple of 2 tensors containing:

  • recall: an scalar tensor with the maximum recall for the given precision level

  • threshold: an scalar tensor with the corresponding threshold level

Return type

(tuple)

Example

>>> from torchmetrics.classification import BinaryRecallAtFixedPrecision
>>> preds = torch.tensor([0, 0.5, 0.7, 0.8])
>>> target = torch.tensor([0, 1, 1, 0])
>>> metric = BinaryRecallAtFixedPrecision(min_precision=0.5, thresholds=None)
>>> metric(preds, target)
(tensor(1.), tensor(0.5000))
>>> metric = BinaryRecallAtFixedPrecision(min_precision=0.5, thresholds=5)
>>> metric(preds, target)
(tensor(1.), tensor(0.5000))

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()[source]

Override this method to compute the final metric value from state variables synchronized across the distributed backend.

Return type

Tuple[Tensor, Tensor]

MulticlassRecallAtFixedPrecision

class torchmetrics.classification.MulticlassRecallAtFixedPrecision(num_classes, min_precision, thresholds=None, ignore_index=None, validate_args=True, **kwargs)[source]

Computes the higest possible recall value given the minimum precision thresholds provided. This is done by first calculating the precision-recall curve for different thresholds and the find the recall for a given precision level.

Accepts the following input tensors:

  • preds (float tensor): (N, C, ...). Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply softmax per sample.

  • target (int tensor): (N, ...). Target should be a tensor containing ground truth labels, and therefore only contain values in the [0, n_classes-1] range (except if ignore_index is specified).

Additional dimension ... will be flattened into the batch dimension.

The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size \mathcal{O}(n_{samples}) whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size \mathcal{O}(n_{thresholds} \times n_{classes}) (constant memory).

Parameters
  • num_classes (int) – Integer specifing the number of classes

  • min_precision (float) – float value specifying minimum precision threshold.

  • thresholds (Union[int, List[float], Tensor, None]) –

    Can be one of:

    • If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.

    • If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.

    • If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation

    • If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Returns

a tuple of either 2 tensors or 2 lists containing

  • recall: an 1d tensor of size (n_classes, ) with the maximum recall for the given precision level per class

  • thresholds: an 1d tensor of size (n_classes, ) with the corresponding threshold level per class

Return type

(tuple)

Example

>>> from torchmetrics.classification import MulticlassRecallAtFixedPrecision
>>> preds = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
...                       [0.05, 0.75, 0.05, 0.05, 0.05],
...                       [0.05, 0.05, 0.75, 0.05, 0.05],
...                       [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> metric = MulticlassRecallAtFixedPrecision(num_classes=5, min_precision=0.5, thresholds=None)
>>> metric(preds, target)
(tensor([1., 1., 0., 0., 0.]), tensor([7.5000e-01, 7.5000e-01, 1.0000e+06, 1.0000e+06, 1.0000e+06]))
>>> metric = MulticlassRecallAtFixedPrecision(num_classes=5, min_precision=0.5, thresholds=5)
>>> metric(preds, target)
(tensor([1., 1., 0., 0., 0.]), tensor([7.5000e-01, 7.5000e-01, 1.0000e+06, 1.0000e+06, 1.0000e+06]))

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()[source]

Override this method to compute the final metric value from state variables synchronized across the distributed backend.

Return type

Tuple[Tensor, Tensor]

MultilabelRecallAtFixedPrecision

class torchmetrics.classification.MultilabelRecallAtFixedPrecision(num_labels, min_precision, thresholds=None, ignore_index=None, validate_args=True, **kwargs)[source]

Computes the higest possible recall value given the minimum precision thresholds provided. This is done by first calculating the precision-recall curve for different thresholds and the find the recall for a given precision level.

Accepts the following input tensors:

  • preds (float tensor): (N, C, ...). Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.

  • target (int tensor): (N, C, ...). Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified).

Additional dimension ... will be flattened into the batch dimension.

The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size \mathcal{O}(n_{samples}) whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size \mathcal{O}(n_{thresholds} \times n_{labels}) (constant memory).

Parameters
  • num_labels (int) – Integer specifing the number of labels

  • min_precision (float) – float value specifying minimum precision threshold.

  • thresholds (Union[int, List[float], Tensor, None]) –

    Can be one of:

    • If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.

    • If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.

    • If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation

    • If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Returns

a tuple of either 2 tensors or 2 lists containing

  • recall: an 1d tensor of size (n_classes, ) with the maximum recall for the given precision level per class

  • thresholds: an 1d tensor of size (n_classes, ) with the corresponding threshold level per class

Return type

(tuple)

Example

>>> from torchmetrics.classification import MultilabelRecallAtFixedPrecision
>>> preds = torch.tensor([[0.75, 0.05, 0.35],
...                       [0.45, 0.75, 0.05],
...                       [0.05, 0.55, 0.75],
...                       [0.05, 0.65, 0.05]])
>>> target = torch.tensor([[1, 0, 1],
...                        [0, 0, 0],
...                        [0, 1, 1],
...                        [1, 1, 1]])
>>> metric = MultilabelRecallAtFixedPrecision(num_labels=3, min_precision=0.5, thresholds=None)
>>> metric(preds, target)
(tensor([1., 1., 1.]), tensor([0.0500, 0.5500, 0.0500]))
>>> metric = MultilabelRecallAtFixedPrecision(num_labels=3, min_precision=0.5, thresholds=5)
>>> metric(preds, target)
(tensor([1., 1., 1.]), tensor([0.0000, 0.5000, 0.0000]))

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()[source]

Override this method to compute the final metric value from state variables synchronized across the distributed backend.

Return type

Tuple[Tensor, Tensor]

Functional Interface

binary_recall_at_fixed_precision

torchmetrics.functional.classification.binary_recall_at_fixed_precision(preds, target, min_precision, thresholds=None, ignore_index=None, validate_args=True)[source]

Computes the higest possible recall value given the minimum precision thresholds provided for binary tasks. This is done by first calculating the precision-recall curve for different thresholds and the find the recall for a given precision level.

Accepts the following input tensors:

  • preds (float tensor): (N, ...). Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.

  • target (int tensor): (N, ...). Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified).

Additional dimension ... will be flattened into the batch dimension.

The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size \mathcal{O}(n_{samples}) whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size \mathcal{O}(n_{thresholds}) (constant memory).

Parameters
  • preds (Tensor) – Tensor with predictions

  • target (Tensor) – Tensor with true labels

  • min_precision (float) – float value specifying minimum precision threshold.

  • thresholds (Union[int, List[float], Tensor, None]) –

    Can be one of:

    • If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.

    • If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.

    • If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation

    • If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

Returns

a tuple of 2 tensors containing:

  • recall: an scalar tensor with the maximum recall for the given precision level

  • threshold: an scalar tensor with the corresponding threshold level

Return type

(tuple)

Example

>>> from torchmetrics.functional.classification import binary_recall_at_fixed_precision
>>> preds = torch.tensor([0, 0.5, 0.7, 0.8])
>>> target = torch.tensor([0, 1, 1, 0])
>>> binary_recall_at_fixed_precision(preds, target, min_precision=0.5, thresholds=None)
(tensor(1.), tensor(0.5000))
>>> binary_recall_at_fixed_precision(preds, target, min_precision=0.5, thresholds=5)
(tensor(1.), tensor(0.5000))

multiclass_recall_at_fixed_precision

torchmetrics.functional.classification.multiclass_recall_at_fixed_precision(preds, target, num_classes, min_precision, thresholds=None, ignore_index=None, validate_args=True)[source]

Computes the higest possible recall value given the minimum precision thresholds provided for multiclass tasks. This is done by first calculating the precision-recall curve for different thresholds and the find the recall for a given precision level.

Accepts the following input tensors:

  • preds (float tensor): (N, C, ...). Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply softmax per sample.

  • target (int tensor): (N, ...). Target should be a tensor containing ground truth labels, and therefore only contain values in the [0, n_classes-1] range (except if ignore_index is specified).

Additional dimension ... will be flattened into the batch dimension.

The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size \mathcal{O}(n_{samples}) whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size \mathcal{O}(n_{thresholds} \times n_{classes}) (constant memory).

Parameters
  • preds (Tensor) – Tensor with predictions

  • target (Tensor) – Tensor with true labels

  • num_classes (int) – Integer specifing the number of classes

  • min_precision (float) – float value specifying minimum precision threshold.

  • thresholds (Union[int, List[float], Tensor, None]) –

    Can be one of:

    • If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.

    • If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.

    • If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation

    • If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

Returns

a tuple of either 2 tensors or 2 lists containing

  • recall: an 1d tensor of size (n_classes, ) with the maximum recall for the given precision level per class

  • thresholds: an 1d tensor of size (n_classes, ) with the corresponding threshold level per class

Return type

(tuple)

Example

>>> from torchmetrics.functional.classification import multiclass_recall_at_fixed_precision
>>> preds = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
...                       [0.05, 0.75, 0.05, 0.05, 0.05],
...                       [0.05, 0.05, 0.75, 0.05, 0.05],
...                       [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> multiclass_recall_at_fixed_precision(preds, target, num_classes=5, min_precision=0.5, thresholds=None)
(tensor([1., 1., 0., 0., 0.]), tensor([7.5000e-01, 7.5000e-01, 1.0000e+06, 1.0000e+06, 1.0000e+06]))
>>> multiclass_recall_at_fixed_precision(preds, target, num_classes=5, min_precision=0.5, thresholds=5)
(tensor([1., 1., 0., 0., 0.]), tensor([7.5000e-01, 7.5000e-01, 1.0000e+06, 1.0000e+06, 1.0000e+06]))

multilabel_recall_at_fixed_precision

torchmetrics.functional.classification.multilabel_recall_at_fixed_precision(preds, target, num_labels, min_precision, thresholds=None, ignore_index=None, validate_args=True)[source]

Computes the higest possible recall value given the minimum precision thresholds provided for multilabel tasks. This is done by first calculating the precision-recall curve for different thresholds and the find the recall for a given precision level.

Accepts the following input tensors:

  • preds (float tensor): (N, C, ...). Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.

  • target (int tensor): (N, C, ...). Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified).

Additional dimension ... will be flattened into the batch dimension.

The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size \mathcal{O}(n_{samples}) whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size \mathcal{O}(n_{thresholds} \times n_{labels}) (constant memory).

Parameters
  • preds (Tensor) – Tensor with predictions

  • target (Tensor) – Tensor with true labels

  • num_labels (int) – Integer specifing the number of labels

  • min_precision (float) – float value specifying minimum precision threshold.

  • thresholds (Union[int, List[float], Tensor, None]) –

    Can be one of:

    • If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.

    • If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.

    • If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation

    • If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.

  • validate_args (bool) – bool indicating if input arguments and tensors should be validated for correctness. Set to False for faster computations.

Returns

a tuple of either 2 tensors or 2 lists containing

  • recall: an 1d tensor of size (n_classes, ) with the maximum recall for the given precision level per class

  • thresholds: an 1d tensor of size (n_classes, ) with the corresponding threshold level per class

Return type

(tuple)

Example

>>> from torchmetrics.functional.classification import multilabel_recall_at_fixed_precision
>>> preds = torch.tensor([[0.75, 0.05, 0.35],
...                       [0.45, 0.75, 0.05],
...                       [0.05, 0.55, 0.75],
...                       [0.05, 0.65, 0.05]])
>>> target = torch.tensor([[1, 0, 1],
...                        [0, 0, 0],
...                        [0, 1, 1],
...                        [1, 1, 1]])
>>> multilabel_recall_at_fixed_precision(preds, target, num_labels=3, min_precision=0.5, thresholds=None)
(tensor([1., 1., 1.]), tensor([0.0500, 0.5500, 0.0500]))
>>> multilabel_recall_at_fixed_precision(preds, target, num_labels=3, min_precision=0.5, thresholds=5)
(tensor([1., 1., 1.]), tensor([0.0000, 0.5000, 0.0000]))
Read the Docs v: latest
Versions
latest
stable
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.