Error Relative Global Dim. Synthesis (ERGAS)¶
Module Interface¶
- class torchmetrics.image.ergas.ErrorRelativeGlobalDimensionlessSynthesis(ratio=4, reduction='elementwise_mean', **kwargs)[source]
Calculate Relative dimensionless global error synthesis (ERGAS).
This metric is used to calculate the accuracy of Pan sharpened image considering normalized average error of each band of the result image.
As input to
forward
andupdate
the metric accepts the following inputAs output of forward and compute the metric returns the following output
ergas
(Tensor
): ifreduction!='none'
returns float scalar tensor with average ERGAS value over sample else returns tensor of shape(N,)
with ERGAS values per sample
- Parameters
ratio¶ (
Union
[int
,float
]) – ratio of high resolution to low resolutionreduction¶ (
Literal
[‘elementwise_mean’, ‘sum’, ‘none’, None]) –a method to reduce metric score over labels.
'elementwise_mean'
: takes the mean (default)'sum'
: takes the sum'none'
orNone
: no reduction will be applied
kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
Example
>>> import torch >>> from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis >>> preds = torch.rand([16, 1, 16, 16], generator=torch.manual_seed(42)) >>> target = preds * 0.75 >>> ergas = ErrorRelativeGlobalDimensionlessSynthesis() >>> torch.round(ergas(preds, target)) tensor(154.)
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- plot(val=None, ax=None)[source]
Plot a single or multiple values from the metric.
- Parameters
val¶ (
Union
[Tensor
,Sequence
[Tensor
],None
]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.ax¶ (
Optional
[Axes
]) – An matplotlib axis object. If provided will add plot to that axis
- Return type
- Returns
Figure and Axes object
- Raises
ModuleNotFoundError – If matplotlib is not installed
>>> # Example plotting a single value >>> import torch >>> from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis >>> preds = torch.rand([16, 1, 16, 16], generator=torch.manual_seed(42)) >>> target = preds * 0.75 >>> metric = ErrorRelativeGlobalDimensionlessSynthesis() >>> metric.update(preds, target) >>> fig_, ax_ = metric.plot()
(
Source code
,png
,hires.png
,pdf
)>>> # Example plotting multiple values >>> import torch >>> from torchmetrics.image import ErrorRelativeGlobalDimensionlessSynthesis >>> preds = torch.rand([16, 1, 16, 16], generator=torch.manual_seed(42)) >>> target = preds * 0.75 >>> metric = ErrorRelativeGlobalDimensionlessSynthesis() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(preds, target)) >>> fig_, ax_ = metric.plot(values)
(
Source code
,png
,hires.png
,pdf
)
Functional Interface¶
- torchmetrics.functional.error_relative_global_dimensionless_synthesis(preds, target, ratio=4, reduction='elementwise_mean')[source]
Wrapper for deprecated import.
>>> import torch >>> preds = torch.rand([16, 1, 16, 16], generator=torch.manual_seed(42)) >>> target = preds * 0.75 >>> ergds = _error_relative_global_dimensionless_synthesis(preds, target) >>> torch.round(ergds) tensor(154.)
- Return type