Shortcuts

Multi-Scale SSIM

Module Interface

class torchmetrics.MultiScaleStructuralSimilarityIndexMeasure(gaussian_kernel=True, kernel_size=11, sigma=1.5, reduction='elementwise_mean', data_range=None, k1=0.01, k2=0.03, betas=(0.0448, 0.2856, 0.3001, 0.2363, 0.1333), normalize=None, **kwargs)[source]

Computes MultiScaleSSIM, Multi-scale Structural Similarity Index Measure, which is a generalization of Structural Similarity Index Measure by incorporating image details at different resolution scores.

Parameters
  • gaussian_kernel (bool) – If True (default), a gaussian kernel is used, if false a uniform kernel is used

  • kernel_size (Union[int, Sequence[int]]) – size of the gaussian kernel

  • sigma (Union[float, Sequence[float]]) – Standard deviation of the gaussian kernel

  • reduction (Literal[‘elementwise_mean’, ‘sum’, ‘none’, None]) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean

    • 'sum': takes the sum

    • 'none' or None: no reduction will be applied

  • data_range (Optional[float]) – Range of the image. If None, it is determined from the image (max - min)

  • k1 (float) – Parameter of structural similarity index measure.

  • k2 (float) – Parameter of structural similarity index measure.

  • betas (Tuple[float, ...]) – Exponent parameters for individual similarities and contrastive sensitivies returned by different image resolutions.

  • normalize (Optional[Literal[‘relu’, ‘simple’, None]]) – When MultiScaleStructuralSimilarityIndexMeasure loss is used for training, it is desirable to use normalizes to improve the training stability. This normalize argument is out of scope of the original implementation [1], and it is adapted from https://github.com/jorge-pessoa/pytorch-msssim instead.

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Returns

Tensor with Multi-Scale SSIM score

Raises
  • ValueError – If kernel_size is not an int or a Sequence of ints with size 2 or 3.

  • ValueError – If betas is not a tuple of floats with lengt 2.

  • ValueError – If normalize is neither None, ReLU nor simple.

Example

>>> from torchmetrics import MultiScaleStructuralSimilarityIndexMeasure
>>> import torch
>>> preds = torch.rand([1, 1, 256, 256], generator=torch.manual_seed(42))
>>> target = preds * 0.75
>>> ms_ssim = MultiScaleStructuralSimilarityIndexMeasure()
>>> ms_ssim(preds, target)
tensor(0.9558)

References

[1] Multi-Scale Structural Similarity For Image Quality Assessment by Zhou Wang, Eero P. Simoncelli and Alan C. Bovik MultiScaleSSIM

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()[source]

Computes explained variance over state.

Return type

Tensor

update(preds, target)[source]

Update state with predictions and targets.

Parameters
  • preds (Tensor) – Predictions from model of shape [N, C, H, W]

  • target (Tensor) – Ground truth values of shape [N, C, H, W]

Return type

None

Functional Interface

torchmetrics.functional.multiscale_structural_similarity_index_measure(preds, target, gaussian_kernel=True, sigma=1.5, kernel_size=11, reduction='elementwise_mean', data_range=None, k1=0.01, k2=0.03, betas=(0.0448, 0.2856, 0.3001, 0.2363, 0.1333), normalize=None)[source]

Computes MultiScaleSSIM, Multi-scale Structual Similarity Index Measure, which is a generalization of Structual Similarity Index Measure by incorporating image details at different resolution scores.

Parameters
  • preds (Tensor) – Predictions from model of shape [N, C, H, W]

  • target (Tensor) – Ground truth values of shape [N, C, H, W]

  • kernel_size (Union[int, Sequence[int]]) – size of the gaussian kernel

  • sigma (Union[float, Sequence[float]]) – Standard deviation of the gaussian kernel

  • reduction (Literal[‘elementwise_mean’, ‘sum’, ‘none’, None]) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean

    • 'sum': takes the sum

    • 'none' or None: no reduction will be applied

  • data_range (Optional[float]) – Range of the image. If None, it is determined from the image (max - min)

  • k1 (float) – Parameter of structural similarity index measure.

  • k2 (float) – Parameter of structural similarity index measure.

  • betas (Tuple[float, ...]) – Exponent parameters for individual similarities and contrastive sensitivies returned by different image resolutions.

  • normalize (Optional[Literal[‘relu’, ‘simple’]]) – When MultiScaleSSIM loss is used for training, it is desirable to use normalizes to improve the training stability. This normalize argument is out of scope of the original implementation [1], and it is adapted from https://github.com/jorge-pessoa/pytorch-msssim instead.

Return type

Tensor

Returns

Tensor with Multi-Scale SSIM score

Raises
  • TypeError – If preds and target don’t have the same data type.

  • ValueError – If preds and target don’t have BxCxHxW shape.

  • ValueError – If the length of kernel_size or sigma is not 2.

  • ValueError – If one of the elements of kernel_size is not an odd positive number.

  • ValueError – If one of the elements of sigma is not a positive number.

Example

>>> from torchmetrics.functional import multiscale_structural_similarity_index_measure
>>> preds = torch.rand([1, 1, 256, 256], generator=torch.manual_seed(42))
>>> target = preds * 0.75
>>> multiscale_structural_similarity_index_measure(preds, target)
tensor(0.9558)

References

[1] Multi-Scale Structural Similarity For Image Quality Assessment by Zhou Wang, Eero P. Simoncelli and Alan C. Bovik MultiScaleSSIM

Read the Docs v: latest
Versions
latest
stable
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
refactor-structure
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.