Shortcuts

KL Divergence

Module Interface

class torchmetrics.KLDivergence(log_prob=False, reduction='mean', **kwargs)[source]

Compute the KL divergence.

D_{KL}(P||Q) = \sum_{x\in\mathcal{X}} P(x) \log\frac{P(x)}{Q{x}}

Where P and Q are probability distributions where P usually represents a distribution over data and Q is often a prior or approximation of P. It should be noted that the KL divergence is a non-symetrical metric i.e. D_{KL}(P||Q) \neq D_{KL}(Q||P).

As input to forward and update the metric accepts the following input:

  • p (Tensor): a data distribution with shape (N, d)

  • q (Tensor): prior or approximate distribution with shape (N, d)

As output of forward and compute the metric returns the following output:

  • kl_divergence (Tensor): A tensor with the KL divergence

Parameters
  • log_prob (bool) – bool indicating if input is log-probabilities or probabilities. If given as probabilities, will normalize to make sure the distributes sum to 1.

  • reduction (Literal[‘mean’, ‘sum’, ‘none’, None]) –

    Determines how to reduce over the N/batch dimension:

    • 'mean' [default]: Averages score across samples

    • 'sum': Sum score across samples

    • 'none' or None: Returns score per sample

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Raises
  • TypeError – If log_prob is not an bool.

  • ValueError – If reduction is not one of 'mean', 'sum', 'none' or None.

Note

Half precision is only support on GPU for this metric

Example

>>> from torch import tensor
>>> from torchmetrics import KLDivergence
>>> p = tensor([[0.36, 0.48, 0.16]])
>>> q = tensor([[1/3, 1/3, 1/3]])
>>> kl_divergence = KLDivergence()
>>> kl_divergence(p, q)
tensor(0.0853)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type

Tuple[Figure, Union[Axes, ndarray]]

Returns

Figure and Axes object

Raises

ModuleNotFoundError – If matplotlib is not installed

>>> from torch import randn
>>> # Example plotting a single value
>>> from torchmetrics.regression import KLDivergence
>>> metric = KLDivergence()
>>> metric.update(randn(10,3).softmax(dim=-1), randn(10,3).softmax(dim=-1))
>>> fig_, ax_ = metric.plot()

(Source code, png, hires.png, pdf)

../_images/kl_divergence-1.png
>>> from torch import randn
>>> # Example plotting multiple values
>>> from torchmetrics.regression import KLDivergence
>>> metric = KLDivergence()
>>> values = []
>>> for _ in range(10):
...     values.append(metric(randn(10,3).softmax(dim=-1), randn(10,3).softmax(dim=-1)))
>>> fig, ax = metric.plot(values)

(Source code, png, hires.png, pdf)

../_images/kl_divergence-2.png

Functional Interface

torchmetrics.functional.kl_divergence(p, q, log_prob=False, reduction='mean')[source]

Compute KL divergence.

D_{KL}(P||Q) = \sum_{x\in\mathcal{X}} P(x) \log\frac{P(x)}{Q{x}}

Where P and Q are probability distributions where P usually represents a distribution over data and Q is often a prior or approximation of P. It should be noted that the KL divergence is a non-symetrical metric i.e. D_{KL}(P||Q) \neq D_{KL}(Q||P).

Parameters
  • p (Tensor) – data distribution with shape [N, d]

  • q (Tensor) – prior or approximate distribution with shape [N, d]

  • log_prob (bool) – bool indicating if input is log-probabilities or probabilities. If given as probabilities, will normalize to make sure the distributes sum to 1

  • reduction (Literal[‘mean’, ‘sum’, ‘none’, None]) –

    Determines how to reduce over the N/batch dimension:

    • 'mean' [default]: Averages score across samples

    • 'sum': Sum score across samples

    • 'none' or None: Returns score per sample

Example

>>> from torch import tensor
>>> p = tensor([[0.36, 0.48, 0.16]])
>>> q = tensor([[1/3, 1/3, 1/3]])
>>> kl_divergence(p, q)
tensor(0.0853)
Return type

Tensor

Read the Docs v: latest
Versions
latest
stable
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.