Shortcuts

Mean Squared Log Error (MSLE)

Module Interface

class torchmetrics.MeanSquaredLogError(**kwargs)[source]

Computes mean squared logarithmic error (MSLE):

\text{MSLE} = \frac{1}{N}\sum_i^N (\log_e(1 + y_i) - \log_e(1 + \hat{y_i}))^2

Where y is a tensor of target values, and \hat{y} is a tensor of predictions.

Parameters

kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> from torchmetrics import MeanSquaredLogError
>>> target = torch.tensor([2.5, 5, 4, 8])
>>> preds = torch.tensor([3, 5, 2.5, 7])
>>> mean_squared_log_error = MeanSquaredLogError()
>>> mean_squared_log_error(preds, target)
tensor(0.0397)

Note

Half precision is only support on GPU for this metric

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()[source]

Compute mean squared logarithmic error over state.

Return type

Tensor

update(preds, target)[source]

Update state with predictions and targets.

Parameters
  • preds (Tensor) – Predictions from model

  • target (Tensor) – Ground truth values

Return type

None

Functional Interface

torchmetrics.functional.mean_squared_log_error(preds, target)[source]

Computes mean squared log error.

Parameters
  • preds (Tensor) – estimated labels

  • target (Tensor) – ground truth labels

Return type

Tensor

Returns

Tensor with RMSLE

Example

>>> from torchmetrics.functional import mean_squared_log_error
>>> x = torch.tensor([0., 1, 2, 3])
>>> y = torch.tensor([0., 1, 2, 2])
>>> mean_squared_log_error(x, y)
tensor(0.0207)

Note

Half precision is only support on GPU for this metric

Read the Docs v: latest
Versions
latest
stable
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
refactor-structure
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.