Shortcuts

Pearson Corr. Coef.¶

Module Interface¶

class torchmetrics.PearsonCorrCoef(num_outputs=1, **kwargs)[source]

Compute Pearson Correlation Coefficient.

Where is a tensor of target values, and is a tensor of predictions.

As input to forward and update the metric accepts the following input:

• preds (Tensor): either single output float tensor with shape (N,) or multioutput float tensor of shape (N,d)

• target (Tensor): either single output tensor with shape (N,) or multioutput tensor of shape (N,d)

As output of forward and compute the metric returns the following output:

Parameters
Example (single output regression):
>>> from torchmetrics.regression import PearsonCorrCoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> pearson = PearsonCorrCoef()
>>> pearson(preds, target)
tensor(0.9849)

Example (multi output regression):
>>> from torchmetrics.regression import PearsonCorrCoef
>>> target = torch.tensor([[3, -0.5], [2, 7]])
>>> preds = torch.tensor([[2.5, 0.0], [2, 8]])
>>> pearson = PearsonCorrCoef(num_outputs=2)
>>> pearson(preds, target)
tensor([1., 1.])


Initializes internal Module state, shared by both nn.Module and ScriptModule.

plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters
Return type

Tuple[Figure, Union[Axes, ndarray]]

Returns

Figure and Axes object

Raises

ModuleNotFoundError – If matplotlib is not installed

>>> from torch import randn
>>> # Example plotting a single value
>>> from torchmetrics.regression import PearsonCorrCoef
>>> metric = PearsonCorrCoef()
>>> metric.update(randn(10,), randn(10,))
>>> fig_, ax_ = metric.plot()

>>> from torch import randn
>>> # Example plotting multiple values
>>> from torchmetrics.regression import PearsonCorrCoef
>>> metric = PearsonCorrCoef()
>>> values = []
>>> for _ in range(10):
...     values.append(metric(randn(10,), randn(10,)))
>>> fig, ax = metric.plot(values)


Functional Interface¶

torchmetrics.functional.pearson_corrcoef(preds, target)[source]

Compute pearson correlation coefficient.

Parameters
Example (single output regression):
>>> from torchmetrics.functional.regression import pearson_corrcoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> pearson_corrcoef(preds, target)
tensor(0.9849)

Example (multi output regression):
>>> from torchmetrics.functional.regression import pearson_corrcoef
>>> target = torch.tensor([[3, -0.5], [2, 7]])
>>> preds = torch.tensor([[2.5, 0.0], [2, 8]])
>>> pearson_corrcoef(preds, target)
tensor([1., 1.])

Return type

Tensor

© Copyright Copyright (c) 2020-2023, Lightning-AI et al... Revision 1edf6a11.

Built with Sphinx using a theme provided by Read the Docs.
Versions
latest
stable
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0