Shortcuts

Spearman Corr. Coef.

Module Interface

class torchmetrics.SpearmanCorrCoef(num_outputs=1, **kwargs)[source]

Computes spearmans rank correlation coefficient.

where rg_x and rg_y are the rank associated to the variables x and y. Spearmans correlations coefficient corresponds to the standard pearsons correlation coefficient calculated on the rank variables.

Forward accepts

  • preds (float tensor): (N,d)

  • target``(float tensor): ``(N,d)

Parameters
Example (single output regression):
>>> from torchmetrics import SpearmanCorrCoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> spearman = SpearmanCorrCoef()
>>> spearman(preds, target)
tensor(1.0000)
Example (multi output regression):
>>> from torchmetrics import SpearmanCorrCoef
>>> target = torch.tensor([[3, -0.5], [2, 7]])
>>> preds = torch.tensor([[2.5, 0.0], [2, 8]])
>>> spearman = SpearmanCorrCoef(num_outputs=2)
>>> spearman(preds, target)
tensor([1.0000, 1.0000])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()[source]

Computes Spearman’s correlation coefficient.

Return type

Tensor

update(preds, target)[source]

Update state with predictions and targets.

Parameters
  • preds (Tensor) – Predictions from model

  • target (Tensor) – Ground truth values

Return type

None

Functional Interface

torchmetrics.functional.spearman_corrcoef(preds, target)[source]

Computes spearmans rank correlation coefficient:

where rg_x and rg_y are the rank associated to the variables x and y. Spearmans correlations coefficient corresponds to the standard pearsons correlation coefficient calculated on the rank variables.

Parameters
  • preds (Tensor) – estimated scores

  • target (Tensor) – ground truth scores

Example (single output regression):
>>> from torchmetrics.functional import spearman_corrcoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> spearman_corrcoef(preds, target)
tensor(1.0000)
Example (multi output regression):
>>> from torchmetrics.functional import spearman_corrcoef
>>> target = torch.tensor([[3, -0.5], [2, 7]])
>>> preds = torch.tensor([[2.5, 0.0], [2, 8]])
>>> spearman_corrcoef(preds, target)
tensor([1.0000, 1.0000])
Return type

Tensor

Read the Docs v: latest
Versions
latest
stable
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.