Shortcuts

Weighted MAPE

Module Interface

class torchmetrics.WeightedMeanAbsolutePercentageError(**kwargs)[source]

Compute weighted mean absolute percentage error (WMAPE).

The output of WMAPE metric is a non-negative floating point, where the optimal value is 0. It is computes as:

\text{WMAPE} = \frac{\sum_{t=1}^n | y_t - \hat{y}_t | }{\sum_{t=1}^n |y_t| }

Where y is a tensor of target values, and \hat{y} is a tensor of predictions.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): Predictions from model

  • target (Tensor): Ground truth float tensor with shape (N,d)

As output of forward and compute the metric returns the following output:

  • wmape (Tensor): A tensor with non-negative floating point wmape value between 0 and 1

Parameters

kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> import torch
>>> _ = torch.manual_seed(42)
>>> preds = torch.randn(20,)
>>> target = torch.randn(20,)
>>> wmape = WeightedMeanAbsolutePercentageError()
>>> wmape(preds, target)
tensor(1.3967)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type

Tuple[Figure, Union[Axes, ndarray]]

Returns

Figure and Axes object

Raises

ModuleNotFoundError – If matplotlib is not installed

>>> from torch import randn
>>> # Example plotting a single value
>>> from torchmetrics.regression import WeightedMeanAbsolutePercentageError
>>> metric = WeightedMeanAbsolutePercentageError()
>>> metric.update(randn(10,), randn(10,))
>>> fig_, ax_ = metric.plot()

(Source code, png, hires.png, pdf)

../_images/weighted_mean_absolute_percentage_error-1.png
>>> from torch import randn
>>> # Example plotting multiple values
>>> from torchmetrics.regression import WeightedMeanAbsolutePercentageError
>>> metric = WeightedMeanAbsolutePercentageError()
>>> values = []
>>> for _ in range(10):
...     values.append(metric(randn(10,), randn(10,)))
>>> fig, ax = metric.plot(values)

(Source code, png, hires.png, pdf)

../_images/weighted_mean_absolute_percentage_error-2.png

Functional Interface

torchmetrics.functional.weighted_mean_absolute_percentage_error(preds, target)[source]

Compute weighted mean absolute percentage error (WMAPE).

The output of WMAPE metric is a non-negative floating point, where the optimal value is 0. It is computes as:

\text{WMAPE} = \frac{\sum_{t=1}^n | y_t - \hat{y}_t | }{\sum_{t=1}^n |y_t| }

Where y is a tensor of target values, and \hat{y} is a tensor of predictions.

Parameters
  • preds (Tensor) – estimated labels

  • target (Tensor) – ground truth labels

Return type

Tensor

Returns

Tensor with WMAPE.

Example

>>> import torch
>>> _ = torch.manual_seed(42)
>>> preds = torch.randn(20,)
>>> target = torch.randn(20,)
>>> weighted_mean_absolute_percentage_error(preds, target)
tensor(1.3967)
Read the Docs v: latest
Versions
latest
stable
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.