Shortcuts

Retrieval Mean Reciprocal Rank (MRR)

Module Interface

class torchmetrics.RetrievalMRR(empty_target_action='neg', ignore_index=None, **kwargs)[source]

Compute Mean Reciprocal Rank.

Works with binary target data. Accepts float predictions from a model output.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): A float tensor of shape (N, ...)

  • target (Tensor): A long or bool tensor of shape (N, ...)

  • indexes (Tensor): A long tensor of shape (N, ...) which indicate to which query a prediction belongs

As output to forward and compute the metric returns the following output:

  • mrr (Tensor): A single-value tensor with the reciprocal rank (RR) of the predictions preds w.r.t. the labels target

All indexes, preds and target must have the same dimension and will be flatten at the beginning, so that for example, a tensor of shape (N, M) is treated as (N * M, ). Predictions will be first grouped by indexes and then will be computed as the mean of the metric over each query.

Parameters
  • empty_target_action (str) –

    Specify what to do with queries that do not have at least a positive target. Choose from:

    • 'neg': those queries count as 0.0 (default)

    • 'pos': those queries count as 1.0

    • 'skip': skip those queries; if all queries are skipped, 0.0 is returned

    • 'error': raise a ValueError

  • ignore_index (Optional[int]) – Ignore predictions where the target is equal to this number.

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Raises
  • ValueError – If empty_target_action is not one of error, skip, neg or pos.

  • ValueError – If ignore_index is not None or an integer.

Example

>>> from torch import tensor
>>> from torchmetrics import RetrievalMRR
>>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
>>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
>>> target = tensor([False, False, True, False, True, False, True])
>>> mrr = RetrievalMRR()
>>> mrr(preds, target, indexes=indexes)
tensor(0.7500)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Functional Interface

torchmetrics.functional.retrieval_reciprocal_rank(preds, target)[source]

Compute reciprocal rank (for information retrieval). See Mean Reciprocal Rank.

preds and target should be of the same shape and live on the same device. If no target is True, 0 is returned. target must be either bool or integers and preds must be float, otherwise an error is raised.

Parameters
  • preds (Tensor) – estimated probabilities of each document to be relevant.

  • target (Tensor) – ground truth about each document being relevant or not.

Return type

Tensor

Returns

a single-value tensor with the reciprocal rank (RR) of the predictions preds wrt the labels target.

Example

>>> from torchmetrics.functional import retrieval_reciprocal_rank
>>> preds = torch.tensor([0.2, 0.3, 0.5])
>>> target = torch.tensor([False, True, False])
>>> retrieval_reciprocal_rank(preds, target)
tensor(0.5000)
Read the Docs v: latest
Versions
latest
stable
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.