Shortcuts

Perplexity

Module Interface

class torchmetrics.text.perplexity.Perplexity(ignore_index=None, **kwargs)[source]

Perplexity measures how well a language model predicts a text sample.

It’s calculated as the average number of bits per word a model needs to represent the sample.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): Logits or a unnormalized score assigned to each token in a sequence with shape

    [batch_size, seq_len, vocab_size], which is the output of a language model. Scores will be normalized internally using softmax.

  • target (Tensor): Ground truth values with a shape [batch_size, seq_len]

As output of forward and compute the metric returns the following output:

  • perp (Tensor): A tensor with the perplexity score

Parameters
  • ignore_index (Optional[int]) – Integer specifying a target class to ignore. If given, this class index does not contribute to the returned score.

  • kwargs (Dict[str, Any]) – Additional keyword arguments, see Advanced metric settings for more info.

Examples

>>> from torchmetrics.text import Perplexity
>>> import torch
>>> preds = torch.rand(2, 8, 5, generator=torch.manual_seed(22))
>>> target = torch.randint(5, (2, 8), generator=torch.manual_seed(22))
>>> target[0, 6:] = -100
>>> perp = Perplexity(ignore_index=-100)
>>> perp(preds, target)
tensor(5.2545)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type

Tuple[Figure, Union[Axes, ndarray]]

Returns

Figure and Axes object

Raises

ModuleNotFoundError – If matplotlib is not installed

>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.text import Perplexity
>>> metric = Perplexity()
>>> metric.update(torch.rand(2, 8, 5), torch.randint(5, (2, 8)))
>>> fig_, ax_ = metric.plot()

(Source code, png, hires.png, pdf)

../_images/perplexity-1.png
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.text import Perplexity
>>> metric = Perplexity()
>>> values = [ ]
>>> for _ in range(10):
...     values.append(metric(torch.rand(2, 8, 5), torch.randint(5, (2, 8))))
>>> fig_, ax_ = metric.plot(values)

(Source code, png, hires.png, pdf)

../_images/perplexity-2.png

Functional Interface

torchmetrics.functional.text.perplexity.perplexity(preds, target, ignore_index=None)[source]

Perplexity measures how well a language model predicts a text sample.

This metric is calculated as the average number of bits per word a model needs to represent the sample.

Parameters
  • preds (Tensor) – Logits or a unnormalized score assigned to each token in a sequence with shape [batch_size, seq_len, vocab_size], which is the output of a language model. Scores will be normalized internally using softmax.

  • target (Tensor) – Ground truth values with a shape [batch_size, seq_len].

  • ignore_index (Optional[int]) – Integer specifying a target class to ignore. If given, this class index does not contribute to the returned score.

Return type

Tensor

Returns

Perplexity value

Examples

>>> import torch
>>> preds = torch.rand(2, 8, 5, generator=torch.manual_seed(22))
>>> target = torch.randint(5, (2, 8), generator=torch.manual_seed(22))
>>> target[0, 6:] = -100
>>> perplexity(preds, target, ignore_index=-100)
tensor(5.2545)
Read the Docs v: latest
Versions
latest
stable
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.