Min / Max¶
Module Interface¶
- class torchmetrics.MinMaxMetric(base_metric, **kwargs)[source]
Wrapper metric that tracks both the minimum and maximum of a scalar/tensor across an experiment.
The min/max value will be updated each time
.compute
is called.- Parameters
base_metric¶ (
Metric
) – The metric of which you want to keep track of its maximum and minimum values.kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Raises
ValueError – If
base_metric` argument is not a subclasses instance of ``torchmetrics.Metric
- Example::
>>> import torch >>> from torchmetrics import MinMaxMetric >>> from torchmetrics.classification import BinaryAccuracy >>> from pprint import pprint >>> base_metric = BinaryAccuracy() >>> minmax_metric = MinMaxMetric(base_metric) >>> preds_1 = torch.Tensor([[0.1, 0.9], [0.2, 0.8]]) >>> preds_2 = torch.Tensor([[0.9, 0.1], [0.2, 0.8]]) >>> labels = torch.Tensor([[0, 1], [0, 1]]).long() >>> pprint(minmax_metric(preds_1, labels)) {'max': tensor(1.), 'min': tensor(1.), 'raw': tensor(1.)} >>> pprint(minmax_metric.compute()) {'max': tensor(1.), 'min': tensor(1.), 'raw': tensor(1.)} >>> minmax_metric.update(preds_2, labels) >>> pprint(minmax_metric.compute()) {'max': tensor(1.), 'min': tensor(0.7500), 'raw': tensor(0.7500)}
Initializes internal Module state, shared by both nn.Module and ScriptModule.
- compute()[source]
Compute the underlying metric as well as max and min values for this metric.
Returns a dictionary that consists of the computed value (
raw
), as well as the minimum (min
) and maximum (max
) values.
- reset()[source]
Set
max_val
andmin_val
to the initialization bounds and resets the base metric.- Return type