Shortcuts

Confusion Matrix

Module Interface

class torchmetrics.ConfusionMatrix(num_classes, normalize=None, threshold=0.5, multilabel=False, **kwargs)[source]

Computes the confusion matrix.

Works with binary, multiclass, and multilabel data. Accepts probabilities or logits from a model output or integer class values in prediction. Works with multi-dimensional preds and target, but it should be noted that additional dimensions will be flattened.

Forward accepts

  • preds (float or long tensor): (N, ...) or (N, C, ...) where C is the number of classes

  • target (long tensor): (N, ...)

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument to convert into integer labels. This is the case for binary and multi-label probabilities or logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

If working with multilabel data, setting the is_multilabel argument to True will make sure that a confusion matrix gets calculated per label.

Parameters
  • num_classes (int) – Number of classes in the dataset.

  • normalize (Optional[str]) –

    Normalization mode for confusion matrix. Choose from:

    • None or 'none': no normalization (default)

    • 'true': normalization over the targets (most commonly used)

    • 'pred': normalization over the predictions

    • 'all': normalization over the whole matrix

  • threshold (float) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

  • multilabel (bool) – determines if data is multilabel or not.

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example (binary data):
>>> from torchmetrics import ConfusionMatrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> confmat = ConfusionMatrix(num_classes=2)
>>> confmat(preds, target)
tensor([[2, 0],
        [1, 1]])
Example (multiclass data):
>>> target = torch.tensor([2, 1, 0, 0])
>>> preds = torch.tensor([2, 1, 0, 1])
>>> confmat = ConfusionMatrix(num_classes=3)
>>> confmat(preds, target)
tensor([[1, 1, 0],
        [0, 1, 0],
        [0, 0, 1]])
Example (multilabel data):
>>> target = torch.tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = torch.tensor([[0, 0, 1], [1, 0, 1]])
>>> confmat = ConfusionMatrix(num_classes=3, multilabel=True)
>>> confmat(preds, target)
tensor([[[1, 0], [0, 1]],
        [[1, 0], [1, 0]],
        [[0, 1], [0, 1]]])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()[source]

Computes confusion matrix.

Return type

Tensor

Returns

If multilabel=False this will be a [n_classes, n_classes] tensor and if multilabel=True this will be a [n_classes, 2, 2] tensor.

update(preds, target)[source]

Update state with predictions and targets.

Parameters
  • preds (Tensor) – Predictions from model

  • target (Tensor) – Ground truth values

Return type

None

Functional Interface

torchmetrics.functional.confusion_matrix(preds, target, num_classes, normalize=None, threshold=0.5, multilabel=False)[source]

Computes the confusion matrix. Works with binary, multiclass, and multilabel data. Accepts probabilities or logits from a model output or integer class values in prediction. Works with multi-dimensional preds and target, but it should be noted that additional dimensions will be flattened.

If preds and target are the same shape and preds is a float tensor, we use the self.threshold argument to convert into integer labels. This is the case for binary and multi-label probabilities or logits.

If preds has an extra dimension as in the case of multi-class scores we perform an argmax on dim=1.

If working with multilabel data, setting the is_multilabel argument to True will make sure that a confusion matrix gets calculated per label.

Parameters
  • preds (Tensor) – (float or long tensor), Either a (N, ...) tensor with labels or (N, C, ...) where C is the number of classes, tensor with labels/logits/probabilities

  • target (Tensor) – target (long tensor), tensor with shape (N, ...) with ground true labels

  • num_classes (int) – Number of classes in the dataset.

  • normalize (Optional[str]) –

    Normalization mode for confusion matrix. Choose from:

    • None or 'none': no normalization (default)

    • 'true': normalization over the targets (most commonly used)

    • 'pred': normalization over the predictions

    • 'all': normalization over the whole matrix

  • threshold (float) – Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.

  • multilabel (bool) – determines if data is multilabel or not.

Example (binary data):
>>> from torchmetrics import ConfusionMatrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> confmat = ConfusionMatrix(num_classes=2)
>>> confmat(preds, target)
tensor([[2, 0],
        [1, 1]])
Example (multiclass data):
>>> target = torch.tensor([2, 1, 0, 0])
>>> preds = torch.tensor([2, 1, 0, 1])
>>> confmat = ConfusionMatrix(num_classes=3)
>>> confmat(preds, target)
tensor([[1, 1, 0],
        [0, 1, 0],
        [0, 0, 1]])
Example (multilabel data):
>>> target = torch.tensor([[0, 1, 0], [1, 0, 1]])
>>> preds = torch.tensor([[0, 0, 1], [1, 0, 1]])
>>> confmat = ConfusionMatrix(num_classes=3, multilabel=True)
>>> confmat(preds, target)
tensor([[[1, 0], [0, 1]],
        [[1, 0], [1, 0]],
        [[0, 1], [0, 1]]])
Return type

Tensor

Read the Docs v: stable
Versions
latest
stable
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
refactor-structure
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.