Shortcuts

Weighted MAPE

Module Interface

class torchmetrics.WeightedMeanAbsolutePercentageError(**kwargs)[source]

Computes weighted mean absolute percentage error (WMAPE). The output of WMAPE metric is a non-negative floating point, where the optimal value is 0. It is computes as:

\text{WMAPE} = \frac{\sum_{t=1}^n | y_t - \hat{y}_t | }{\sum_{t=1}^n |y_t| }

Where y is a tensor of target values, and \hat{y} is a tensor of predictions.

Parameters

kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> import torch
>>> _ = torch.manual_seed(42)
>>> preds = torch.randn(20,)
>>> target = torch.randn(20,)
>>> metric = WeightedMeanAbsolutePercentageError()
>>> metric(preds, target)
tensor(1.3967)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()[source]

Computes weighted mean absolute percentage error over state.

Return type

Tensor

update(preds, target)[source]

Update state with predictions and targets.

Parameters
  • preds (Tensor) – Predictions from model

  • target (Tensor) – Ground truth values

Return type

None

Functional Interface

torchmetrics.functional.weighted_mean_absolute_percentage_error(preds, target)[source]

Computes weighted mean absolute percentage error (WMAPE).

The output of WMAPE metric is a non-negative floating point, where the optimal value is 0. It is computes as:

\text{WMAPE} = \frac{\sum_{t=1}^n | y_t - \hat{y}_t | }{\sum_{t=1}^n |y_t| }

Where y is a tensor of target values, and \hat{y} is a tensor of predictions.

Parameters
  • preds (Tensor) – estimated labels

  • target (Tensor) – ground truth labels

Return type

Tensor

Returns

Tensor with WMAPE.

Example

>>> import torch
>>> _ = torch.manual_seed(42)
>>> preds = torch.randn(20,)
>>> target = torch.randn(20,)
>>> weighted_mean_absolute_percentage_error(preds, target)
tensor(1.3967)
Read the Docs v: v0.8.1
Versions
latest
stable
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.