Shortcuts

# Sum¶

## Module Interface¶

class torchmetrics.aggregation.SumMetric(nan_strategy='warn', **kwargs)[source]

Aggregate a stream of value into their sum.

As input to forward and update the metric accepts the following input

As output of forward and compute the metric returns the following output

• agg (Tensor): scalar float tensor with aggregated sum over all inputs received

Parameters:
• nan_strategy (Union[str, float]) – options: - 'error': if any nan values are encounted will give a RuntimeError - 'warn': if any nan values are encounted will give a warning and continue - 'ignore': all nan values are silently removed - a float: if a float is provided will impude any nan values with this value

• kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Raises:

ValueError – If nan_strategy is not one of error, warn, ignore or a float

Example

>>> from torch import tensor
>>> from torchmetrics.aggregation import SumMetric
>>> metric = SumMetric()
>>> metric.update(1)
>>> metric.update(tensor([2, 3]))
>>> metric.compute()
tensor(6.)

plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
Return type:
Returns:

Figure and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>> # Example plotting a single value
>>> from torchmetrics.aggregation import SumMetric
>>> metric = SumMetric()
>>> metric.update([1, 2, 3])
>>> fig_, ax_ = metric.plot()

>>> # Example plotting multiple values
>>> from torch import rand, randint
>>> from torchmetrics.aggregation import SumMetric
>>> metric = SumMetric()
>>> values = [ ]
>>> for i in range(10):
...     values.append(metric([i, i+1]))
>>> fig_, ax_ = metric.plot(values)


© Copyright Copyright (c) 2020-2023, Lightning-AI et al... Revision 520625c3.

Built with Sphinx using a theme provided by Read the Docs.