Shortcuts

Binned Precision Recall Curve

Module Interface

class torchmetrics.BinnedPrecisionRecallCurve(num_classes, thresholds=None, compute_on_step=None, **kwargs)[source]

Computes precision-recall pairs for different thresholds. Works for both binary and multiclass problems. In the case of multiclass, the values will be calculated based on a one-vs-the-rest approach.

Computation is performed in constant-memory by computing precision and recall for thresholds buckets/thresholds (evenly distributed between 0 and 1).

Forward accepts

  • preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor with probabilities, where C is the number of classes.

  • target (long tensor): (N, ...) or (N, C, ...) with integer labels

Parameters
  • num_classes (int) – integer with number of classes. For binary, set to 1.

  • thresholds (Union[int, Tensor, List[float], None]) – list or tensor with specific thresholds or a number of bins from linear sampling. It is used for computation will lead to more detailed curve and accurate estimates, but will be slower and consume more memory.

  • compute_on_step (Optional[bool]) –

    Forward only calls update() and returns None if this is set to False.

    Deprecated since version v0.8: Argument has no use anymore and will be removed v0.9.

  • kwargs (Dict[str, Any]) – Additional keyword arguments, see Advanced metric settings for more info.

Raises

ValueError – If thresholds is not a int, list or tensor

Example (binary case):
>>> from torchmetrics import BinnedPrecisionRecallCurve
>>> pred = torch.tensor([0, 0.1, 0.8, 0.4])
>>> target = torch.tensor([0, 1, 1, 0])
>>> pr_curve = BinnedPrecisionRecallCurve(num_classes=1, thresholds=5)
>>> precision, recall, thresholds = pr_curve(pred, target)
>>> precision
tensor([0.5000, 0.5000, 1.0000, 1.0000, 1.0000, 1.0000])
>>> recall
tensor([1.0000, 0.5000, 0.5000, 0.5000, 0.0000, 0.0000])
>>> thresholds
tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])
Example (multiclass case):
>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
...                      [0.05, 0.75, 0.05, 0.05, 0.05],
...                      [0.05, 0.05, 0.75, 0.05, 0.05],
...                      [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> pr_curve = BinnedPrecisionRecallCurve(num_classes=5, thresholds=3)
>>> precision, recall, thresholds = pr_curve(pred, target)
>>> precision
[tensor([0.2500, 1.0000, 1.0000, 1.0000]),
tensor([0.2500, 1.0000, 1.0000, 1.0000]),
tensor([2.5000e-01, 1.0000e-06, 1.0000e+00, 1.0000e+00]),
tensor([2.5000e-01, 1.0000e-06, 1.0000e+00, 1.0000e+00]),
tensor([2.5000e-07, 1.0000e+00, 1.0000e+00, 1.0000e+00])]
>>> recall
[tensor([1.0000, 1.0000, 0.0000, 0.0000]),
tensor([1.0000, 1.0000, 0.0000, 0.0000]),
tensor([1.0000, 0.0000, 0.0000, 0.0000]),
tensor([1.0000, 0.0000, 0.0000, 0.0000]),
tensor([0., 0., 0., 0.])]
>>> thresholds
[tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000])]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()[source]

Returns float tensor of size n_classes.

Return type

Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor], List[Tensor]]]

update(preds, target)[source]
Args

preds: (n_samples, n_classes) tensor target: (n_samples, n_classes) tensor

Return type

None

Read the Docs v: v0.8.0
Versions
latest
stable
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.