Shortcuts

Precision Recall Curve

Module Interface

class torchmetrics.PrecisionRecallCurve(num_classes=None, pos_label=None, compute_on_step=None, **kwargs)[source]

Computes precision-recall pairs for different thresholds. Works for both binary and multiclass problems. In the case of multiclass, the values will be calculated based on a one-vs-the-rest approach.

Forward accepts

  • preds (float tensor): (N, ...) (binary) or (N, C, ...) (multiclass) tensor with probabilities, where C is the number of classes.

  • target (long tensor): (N, ...) or (N, C, ...) with integer labels

Parameters
  • num_classes (Optional[int]) – integer with number of classes for multi-label and multiclass problems. Should be set to None for binary problems

  • pos_label (Optional[int]) – integer determining the positive class. Default is None which for binary problem is translated to 1. For multiclass problems this argument should not be set as we iteratively change it in the range [0, num_classes-1]

  • compute_on_step (Optional[bool]) –

    Forward only calls update() and returns None if this is set to False.

    Deprecated since version v0.8: Argument has no use anymore and will be removed v0.9.

  • kwargs (Dict[str, Any]) – Additional keyword arguments, see Advanced metric settings for more info.

Example (binary case):
>>> from torchmetrics import PrecisionRecallCurve
>>> pred = torch.tensor([0, 0.1, 0.8, 0.4])
>>> target = torch.tensor([0, 1, 1, 0])
>>> pr_curve = PrecisionRecallCurve(pos_label=1)
>>> precision, recall, thresholds = pr_curve(pred, target)
>>> precision
tensor([0.6667, 0.5000, 1.0000, 1.0000])
>>> recall
tensor([1.0000, 0.5000, 0.5000, 0.0000])
>>> thresholds
tensor([0.1000, 0.4000, 0.8000])
Example (multiclass case):
>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
...                      [0.05, 0.75, 0.05, 0.05, 0.05],
...                      [0.05, 0.05, 0.75, 0.05, 0.05],
...                      [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> pr_curve = PrecisionRecallCurve(num_classes=5)
>>> precision, recall, thresholds = pr_curve(pred, target)
>>> precision
[tensor([1., 1.]), tensor([1., 1.]), tensor([0.2500, 0.0000, 1.0000]),
 tensor([0.2500, 0.0000, 1.0000]), tensor([0., 1.])]
>>> recall
[tensor([1., 0.]), tensor([1., 0.]), tensor([1., 0., 0.]), tensor([1., 0., 0.]), tensor([nan, 0.])]
>>> thresholds
[tensor(0.7500), tensor(0.7500), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor(0.0500)]

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()[source]

Compute the precision-recall curve.

Return type

Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor], List[Tensor]]]

Returns

3-element tuple containing

precision:

tensor where element i is the precision of predictions with score >= thresholds[i] and the last element is 1. If multiclass, this is a list of such tensors, one for each class.

recall:

tensor where element i is the recall of predictions with score >= thresholds[i] and the last element is 0. If multiclass, this is a list of such tensors, one for each class.

thresholds:

Thresholds used for computing precision/recall scores

update(preds, target)[source]

Update state with predictions and targets.

Parameters
  • preds (Tensor) – Predictions from model

  • target (Tensor) – Ground truth values

Return type

None

Functional Interface

torchmetrics.functional.precision_recall_curve(preds, target, num_classes=None, pos_label=None, sample_weights=None)[source]

Computes precision-recall pairs for different thresholds.

Parameters
  • preds (Tensor) – predictions from model (probabilities)

  • target (Tensor) – ground truth labels

  • num_classes (Optional[int]) – integer with number of classes for multi-label and multiclass problems. Should be set to None for binary problems.

  • pos_label (Optional[int]) – integer determining the positive class. Default is None which for binary problem is translated to 1. For multiclass problems this argument should not be set as we iteratively change it in the range [0, num_classes-1]

  • sample_weights (Optional[Sequence]) – sample weights for each data point

Return type

Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor], List[Tensor]]]

Returns

3-element tuple containing

precision:

tensor where element i is the precision of predictions with score >= thresholds[i] and the last element is 1. If multiclass, this is a list of such tensors, one for each class.

recall:

tensor where element i is the recall of predictions with score >= thresholds[i] and the last element is 0. If multiclass, this is a list of such tensors, one for each class.

thresholds:

Thresholds used for computing precision/recall scores

Raises
  • ValueError – If preds and target don’t have the same number of dimensions, or one additional dimension for preds.

  • ValueError – If the number of classes deduced from preds is not the same as the num_classes provided.

Example (binary case):
>>> from torchmetrics.functional import precision_recall_curve
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 1, 0])
>>> precision, recall, thresholds = precision_recall_curve(pred, target, pos_label=1)
>>> precision
tensor([0.6667, 0.5000, 0.0000, 1.0000])
>>> recall
tensor([1.0000, 0.5000, 0.0000, 0.0000])
>>> thresholds
tensor([1, 2, 3])
Example (multiclass case):
>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
...                      [0.05, 0.75, 0.05, 0.05, 0.05],
...                      [0.05, 0.05, 0.75, 0.05, 0.05],
...                      [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> precision, recall, thresholds = precision_recall_curve(pred, target, num_classes=5)
>>> precision
[tensor([1., 1.]), tensor([1., 1.]), tensor([0.2500, 0.0000, 1.0000]),
 tensor([0.2500, 0.0000, 1.0000]), tensor([0., 1.])]
>>> recall
[tensor([1., 0.]), tensor([1., 0.]), tensor([1., 0., 0.]), tensor([1., 0., 0.]), tensor([nan, 0.])]
>>> thresholds
[tensor([0.7500]), tensor([0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor([0.0500])]
Read the Docs v: v0.8.1
Versions
latest
stable
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.