Precision¶
Module Interface¶
- class torchmetrics.Precision(task: Literal['binary', 'multiclass', 'multilabel'], threshold: float = 0.5, num_classes: Optional[int] = None, num_labels: Optional[int] = None, average: Optional[Literal['micro', 'macro', 'weighted', 'none']] = 'micro', multidim_average: Optional[Literal['global', 'samplewise']] = 'global', top_k: Optional[int] = 1, ignore_index: Optional[int] = None, validate_args: bool = True, **kwargs: Any)[source]
Computes Precision:
Where
and
represent the number of true positives and false positives respecitively.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
task
argument to either'binary'
,'multiclass'
ormultilabel
. See the documentation ofBinaryPrecision
,MulticlassPrecision()
andMultilabelPrecision()
for the specific details of each argument influence and examples.- Legacy Example:
>>> import torch >>> preds = torch.tensor([2, 0, 2, 1]) >>> target = torch.tensor([1, 1, 2, 0]) >>> precision = Precision(task="multiclass", average='macro', num_classes=3) >>> precision(preds, target) tensor(0.1667) >>> precision = Precision(task="multiclass", average='micro', num_classes=3) >>> precision(preds, target) tensor(0.2500)
BinaryPrecision¶
- class torchmetrics.classification.BinaryPrecision(threshold=0.5, multidim_average='global', ignore_index=None, validate_args=True, **kwargs)[source]
Computes Precision for binary tasks:
Where
and
represent the number of true positives and false positives respecitively.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): A int or float tensor of shape(N, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Addtionally, we convert to int tensor with thresholding using the value inthreshold
.target
(Tensor
): An int tensor of shape(N, ...)
.
As output to
forward
andcompute
the metric returns the following output:bp
(Tensor
): Ifmultidim_average
is set toglobal
, the metric returns a scalar value. Ifmultidim_average
is set tosamplewise
, the metric returns(N,)
vector consisting of a scalar value per sample.
- Parameters
threshold¶ (
float
) – Threshold for transforming probability to binary {0,1} predictionsmultidim_average¶ (
Literal
[‘global’, ‘samplewise’]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Example (preds is int tensor):
>>> from torchmetrics.classification import BinaryPrecision >>> target = torch.tensor([0, 1, 0, 1, 0, 1]) >>> preds = torch.tensor([0, 0, 1, 1, 0, 1]) >>> metric = BinaryPrecision() >>> metric(preds, target) tensor(0.6667)
- Example (preds is float tensor):
>>> from torchmetrics.classification import BinaryPrecision >>> target = torch.tensor([0, 1, 0, 1, 0, 1]) >>> preds = torch.tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92]) >>> metric = BinaryPrecision() >>> metric(preds, target) tensor(0.6667)
- Example (multidim tensors):
>>> from torchmetrics.classification import BinaryPrecision >>> target = torch.tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = torch.tensor( ... [ ... [[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]], ... ] ... ) >>> metric = BinaryPrecision(multidim_average='samplewise') >>> metric(preds, target) tensor([0.4000, 0.0000])
Initializes internal Module state, shared by both nn.Module and ScriptModule.
MulticlassPrecision¶
- class torchmetrics.classification.MulticlassPrecision(num_classes, top_k=1, average='macro', multidim_average='global', ignore_index=None, validate_args=True, **kwargs)[source]
Computes Precision for multiclass tasks.
Where
and
represent the number of true positives and false positives respecitively.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): An int tensor of shape(N, ...)
or float tensor of shape(N, C, ..)
. If preds is a floating point we applytorch.argmax
along theC
dimension to automatically convert probabilities/logits into an int tensor.target
(Tensor
): An int tensor of shape(N, ...)
.
As output to
forward
andcompute
the metric returns the following output:mcp
(Tensor
): The returned shape depends on theaverage
andmultidim_average
arguments:If
multidim_average
is set toglobal
:If
average='micro'/'macro'/'weighted'
, the output will be a scalar tensorIf
average=None/'none'
, the shape will be(C,)
If
multidim_average
is set tosamplewise
:If
average='micro'/'macro'/'weighted'
, the shape will be(N,)
If
average=None/'none'
, the shape will be(N, C)
- Parameters
num_classes¶ (
int
) – Integer specifing the number of classesaverage¶ (
Optional
[Literal
[‘micro’, ‘macro’, ‘weighted’, ‘none’]]) –Defines the reduction that is applied over labels. Should be one of the following:
micro
: Sum statistics over all labelsmacro
: Calculate statistics for each label and average themweighted
: Calculates statistics for each label and computes weighted average using their support"none"
orNone
: Calculates statistic for each label and applies no reduction
top_k¶ (
int
) – Number of highest probability or logit score predictions considered to find the correct label. Only works whenpreds
contain probabilities/logits.multidim_average¶ (
Literal
[‘global’, ‘samplewise’]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Example (preds is int tensor):
>>> from torchmetrics.classification import MulticlassPrecision >>> target = torch.tensor([2, 1, 0, 0]) >>> preds = torch.tensor([2, 1, 0, 1]) >>> metric = MulticlassPrecision(num_classes=3) >>> metric(preds, target) tensor(0.8333) >>> mcp = MulticlassPrecision(num_classes=3, average=None) >>> mcp(preds, target) tensor([1.0000, 0.5000, 1.0000])
- Example (preds is float tensor):
>>> from torchmetrics.classification import MulticlassPrecision >>> target = torch.tensor([2, 1, 0, 0]) >>> preds = torch.tensor([ ... [0.16, 0.26, 0.58], ... [0.22, 0.61, 0.17], ... [0.71, 0.09, 0.20], ... [0.05, 0.82, 0.13], ... ]) >>> metric = MulticlassPrecision(num_classes=3) >>> metric(preds, target) tensor(0.8333) >>> mcp = MulticlassPrecision(num_classes=3, average=None) >>> mcp(preds, target) tensor([1.0000, 0.5000, 1.0000])
- Example (multidim tensors):
>>> from torchmetrics.classification import MulticlassPrecision >>> target = torch.tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = torch.tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]]) >>> metric = MulticlassPrecision(num_classes=3, multidim_average='samplewise') >>> metric(preds, target) tensor([0.3889, 0.2778]) >>> mcp = MulticlassPrecision(num_classes=3, multidim_average='samplewise', average=None) >>> mcp(preds, target) tensor([[0.6667, 0.0000, 0.5000], [0.0000, 0.5000, 0.3333]])
Initializes internal Module state, shared by both nn.Module and ScriptModule.
MultilabelPrecision¶
- class torchmetrics.classification.MultilabelPrecision(num_labels, threshold=0.5, average='macro', multidim_average='global', ignore_index=None, validate_args=True, **kwargs)[source]
Computes Precision for multilabel tasks.
Where
and
represent the number of true positives and false positives respecitively.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): An int tensor or float tensor of shape(N, C, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Addtionally, we convert to int tensor with thresholding using the value inthreshold
.target
(Tensor
): An int tensor of shape(N, C, ...)
.
As output to
forward
andcompute
the metric returns the following output:mlp
(Tensor
): The returned shape depends on theaverage
andmultidim_average
arguments:If
multidim_average
is set toglobal
:If
average='micro'/'macro'/'weighted'
, the output will be a scalar tensorIf
average=None/'none'
, the shape will be(C,)
If
multidim_average
is set tosamplewise
:If
average='micro'/'macro'/'weighted'
, the shape will be(N,)
If
average=None/'none'
, the shape will be(N, C)
- Parameters
threshold¶ (
float
) – Threshold for transforming probability to binary (0,1) predictionsaverage¶ (
Optional
[Literal
[‘micro’, ‘macro’, ‘weighted’, ‘none’]]) –Defines the reduction that is applied over labels. Should be one of the following:
micro
: Sum statistics over all labelsmacro
: Calculate statistics for each label and average themweighted
: Calculates statistics for each label and computes weighted average using their support"none"
orNone
: Calculates statistic for each label and applies no reduction
multidim_average¶ (
Literal
[‘global’, ‘samplewise’]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Example (preds is int tensor):
>>> from torchmetrics.classification import MultilabelPrecision >>> target = torch.tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = torch.tensor([[0, 0, 1], [1, 0, 1]]) >>> metric = MultilabelPrecision(num_labels=3) >>> metric(preds, target) tensor(0.5000) >>> mlp = MultilabelPrecision(num_labels=3, average=None) >>> mlp(preds, target) tensor([1.0000, 0.0000, 0.5000])
- Example (preds is float tensor):
>>> from torchmetrics.classification import MultilabelPrecision >>> target = torch.tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = torch.tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) >>> metric = MultilabelPrecision(num_labels=3) >>> metric(preds, target) tensor(0.5000) >>> mlp = MultilabelPrecision(num_labels=3, average=None) >>> mlp(preds, target) tensor([1.0000, 0.0000, 0.5000])
- Example (multidim tensors):
>>> from torchmetrics.classification import MultilabelPrecision >>> target = torch.tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = torch.tensor( ... [ ... [[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]], ... ] ... ) >>> metric = MultilabelPrecision(num_labels=3, multidim_average='samplewise') >>> metric(preds, target) tensor([0.3333, 0.0000]) >>> mlp = MultilabelPrecision(num_labels=3, multidim_average='samplewise', average=None) >>> mlp(preds, target) tensor([[0.5000, 0.5000, 0.0000], [0.0000, 0.0000, 0.0000]])
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Functional Interface¶
- torchmetrics.functional.precision(preds, target, task, threshold=0.5, num_classes=None, num_labels=None, average='micro', multidim_average='global', top_k=1, ignore_index=None, validate_args=True)[source]
Computes Precision:
Where
and
represent the number of true positives and false positives respecitively.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
task
argument to either'binary'
,'multiclass'
ormultilabel
. See the documentation ofbinary_precision()
,multiclass_precision()
andmultilabel_precision()
for the specific details of each argument influence and examples.- Legacy Example:
>>> preds = torch.tensor([2, 0, 2, 1]) >>> target = torch.tensor([1, 1, 2, 0]) >>> precision(preds, target, task="multiclass", average='macro', num_classes=3) tensor(0.1667) >>> precision(preds, target, task="multiclass", average='micro', num_classes=3) tensor(0.2500)
- Return type
binary_precision¶
- torchmetrics.functional.classification.binary_precision(preds, target, threshold=0.5, multidim_average='global', ignore_index=None, validate_args=True)[source]
Computes Precision for binary tasks:
Where
and
represent the number of true positives and false positives respecitively.
Accepts the following input tensors:
preds
(int or float tensor):(N, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Addtionally, we convert to int tensor with thresholding using the value inthreshold
.target
(int tensor):(N, ...)
- Parameters
threshold¶ (
float
) – Threshold for transforming probability to binary {0,1} predictionsmultidim_average¶ (
Literal
[‘global’, ‘samplewise’]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Return type
- Returns
If
multidim_average
is set toglobal
, the metric returns a scalar value. Ifmultidim_average
is set tosamplewise
, the metric returns(N,)
vector consisting of a scalar value per sample.
- Example (preds is int tensor):
>>> from torchmetrics.functional.classification import binary_precision >>> target = torch.tensor([0, 1, 0, 1, 0, 1]) >>> preds = torch.tensor([0, 0, 1, 1, 0, 1]) >>> binary_precision(preds, target) tensor(0.6667)
- Example (preds is float tensor):
>>> from torchmetrics.functional.classification import binary_precision >>> target = torch.tensor([0, 1, 0, 1, 0, 1]) >>> preds = torch.tensor([0.11, 0.22, 0.84, 0.73, 0.33, 0.92]) >>> binary_precision(preds, target) tensor(0.6667)
- Example (multidim tensors):
>>> from torchmetrics.functional.classification import binary_precision >>> target = torch.tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = torch.tensor( ... [ ... [[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]], ... ] ... ) >>> binary_precision(preds, target, multidim_average='samplewise') tensor([0.4000, 0.0000])
multiclass_precision¶
- torchmetrics.functional.classification.multiclass_precision(preds, target, num_classes, average='macro', top_k=1, multidim_average='global', ignore_index=None, validate_args=True)[source]
Computes Precision for multiclass tasks.
Where
and
represent the number of true positives and false positives respecitively.
Accepts the following input tensors:
preds
:(N, ...)
(int tensor) or(N, C, ..)
(float tensor). If preds is a floating point we applytorch.argmax
along theC
dimension to automatically convert probabilities/logits into an int tensor.target
(int tensor):(N, ...)
- Parameters
num_classes¶ (
int
) – Integer specifing the number of classesaverage¶ (
Optional
[Literal
[‘micro’, ‘macro’, ‘weighted’, ‘none’]]) –Defines the reduction that is applied over labels. Should be one of the following:
micro
: Sum statistics over all labelsmacro
: Calculate statistics for each label and average themweighted
: Calculates statistics for each label and computes weighted average using their support"none"
orNone
: Calculates statistic for each label and applies no reduction
top_k¶ (
int
) – Number of highest probability or logit score predictions considered to find the correct label. Only works whenpreds
contain probabilities/logits.multidim_average¶ (
Literal
[‘global’, ‘samplewise’]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Returns
If
multidim_average
is set toglobal
:If
average='micro'/'macro'/'weighted'
, the output will be a scalar tensorIf
average=None/'none'
, the shape will be(C,)
If
multidim_average
is set tosamplewise
:If
average='micro'/'macro'/'weighted'
, the shape will be(N,)
If
average=None/'none'
, the shape will be(N, C)
- Return type
The returned shape depends on the
average
andmultidim_average
arguments
- Example (preds is int tensor):
>>> from torchmetrics.functional.classification import multiclass_precision >>> target = torch.tensor([2, 1, 0, 0]) >>> preds = torch.tensor([2, 1, 0, 1]) >>> multiclass_precision(preds, target, num_classes=3) tensor(0.8333) >>> multiclass_precision(preds, target, num_classes=3, average=None) tensor([1.0000, 0.5000, 1.0000])
- Example (preds is float tensor):
>>> from torchmetrics.functional.classification import multiclass_precision >>> target = torch.tensor([2, 1, 0, 0]) >>> preds = torch.tensor([ ... [0.16, 0.26, 0.58], ... [0.22, 0.61, 0.17], ... [0.71, 0.09, 0.20], ... [0.05, 0.82, 0.13], ... ]) >>> multiclass_precision(preds, target, num_classes=3) tensor(0.8333) >>> multiclass_precision(preds, target, num_classes=3, average=None) tensor([1.0000, 0.5000, 1.0000])
- Example (multidim tensors):
>>> from torchmetrics.functional.classification import multiclass_precision >>> target = torch.tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]]) >>> preds = torch.tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]]) >>> multiclass_precision(preds, target, num_classes=3, multidim_average='samplewise') tensor([0.3889, 0.2778]) >>> multiclass_precision(preds, target, num_classes=3, multidim_average='samplewise', average=None) tensor([[0.6667, 0.0000, 0.5000], [0.0000, 0.5000, 0.3333]])
multilabel_precision¶
- torchmetrics.functional.classification.multilabel_precision(preds, target, num_labels, threshold=0.5, average='macro', multidim_average='global', ignore_index=None, validate_args=True)[source]
Computes Precision for multilabel tasks.
Where
and
represent the number of true positives and false positives respecitively.
Accepts the following input tensors:
preds
(int or float tensor):(N, C, ...)
. If preds is a floating point tensor with values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element. Addtionally, we convert to int tensor with thresholding using the value inthreshold
.target
(int tensor):(N, C, ...)
- Parameters
threshold¶ (
float
) – Threshold for transforming probability to binary (0,1) predictionsaverage¶ (
Optional
[Literal
[‘micro’, ‘macro’, ‘weighted’, ‘none’]]) –Defines the reduction that is applied over labels. Should be one of the following:
micro
: Sum statistics over all labelsmacro
: Calculate statistics for each label and average themweighted
: Calculates statistics for each label and computes weighted average using their support"none"
orNone
: Calculates statistic for each label and applies no reduction
multidim_average¶ (
Literal
[‘global’, ‘samplewise’]) –Defines how additionally dimensions
...
should be handled. Should be one of the following:global
: Additional dimensions are flatted along the batch dimensionsamplewise
: Statistic will be calculated independently for each sample on theN
axis. The statistics in this case are calculated over the additional dimensions.
ignore_index¶ (
Optional
[int
]) – Specifies a target value that is ignored and does not contribute to the metric calculationvalidate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Returns
If
multidim_average
is set toglobal
:If
average='micro'/'macro'/'weighted'
, the output will be a scalar tensorIf
average=None/'none'
, the shape will be(C,)
If
multidim_average
is set tosamplewise
:If
average='micro'/'macro'/'weighted'
, the shape will be(N,)
If
average=None/'none'
, the shape will be(N, C)
- Return type
The returned shape depends on the
average
andmultidim_average
arguments
- Example (preds is int tensor):
>>> from torchmetrics.functional.classification import multilabel_precision >>> target = torch.tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = torch.tensor([[0, 0, 1], [1, 0, 1]]) >>> multilabel_precision(preds, target, num_labels=3) tensor(0.5000) >>> multilabel_precision(preds, target, num_labels=3, average=None) tensor([1.0000, 0.0000, 0.5000])
- Example (preds is float tensor):
>>> from torchmetrics.functional.classification import multilabel_precision >>> target = torch.tensor([[0, 1, 0], [1, 0, 1]]) >>> preds = torch.tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]]) >>> multilabel_precision(preds, target, num_labels=3) tensor(0.5000) >>> multilabel_precision(preds, target, num_labels=3, average=None) tensor([1.0000, 0.0000, 0.5000])
- Example (multidim tensors):
>>> from torchmetrics.functional.classification import multilabel_precision >>> target = torch.tensor([[[0, 1], [1, 0], [0, 1]], [[1, 1], [0, 0], [1, 0]]]) >>> preds = torch.tensor( ... [ ... [[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]], ... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]], ... ] ... ) >>> multilabel_precision(preds, target, num_labels=3, multidim_average='samplewise') tensor([0.3333, 0.0000]) >>> multilabel_precision(preds, target, num_labels=3, multidim_average='samplewise', average=None) tensor([[0.5000, 0.5000, 0.0000], [0.0000, 0.0000, 0.0000]])