Shortcuts

torchmetrics.utilities.data

select_topk

torchmetrics.utilities.data.select_topk(prob_tensor, topk=1, dim=1)[source]

Convert a probability tensor to binary by selecting top-k the highest entries.

Parameters
  • prob_tensor (Tensor) – dense tensor of shape [..., C, ...], where C is in the position defined by the dim argument

  • topk (int) – number of the highest entries to turn into 1s

  • dim (int) – dimension on which to compare entries

Return type

Tensor

Returns

A binary tensor of the same shape as the input tensor of type torch.int32

Example

>>> x = torch.tensor([[1.1, 2.0, 3.0], [2.0, 1.0, 0.5]])
>>> select_topk(x, topk=2)
tensor([[0, 1, 1],
        [1, 1, 0]], dtype=torch.int32)

to_categorical

torchmetrics.utilities.data.to_categorical(x, argmax_dim=1)[source]

Converts a tensor of probabilities to a dense label tensor.

Parameters
  • x (Tensor) – probabilities to get the categorical label [N, d1, d2, …]

  • argmax_dim (int) – dimension to apply

Return type

Tensor

Returns

A tensor with categorical labels [N, d2, …]

Example

>>> x = torch.tensor([[0.2, 0.5], [0.9, 0.1]])
>>> to_categorical(x)
tensor([1, 0])

to_onehot

torchmetrics.utilities.data.to_onehot(label_tensor, num_classes=None)[source]

Converts a dense label tensor to one-hot format.

Parameters
  • label_tensor (Tensor) – dense label tensor, with shape [N, d1, d2, …]

  • num_classes (Optional[int]) – number of classes C

Return type

Tensor

Returns

A sparse label tensor with shape [N, C, d1, d2, …]

Example

>>> x = torch.tensor([1, 2, 3])
>>> to_onehot(x)
tensor([[0, 1, 0, 0],
        [0, 0, 1, 0],
        [0, 0, 0, 1]])
Read the Docs v: v0.11.2
Versions
latest
stable
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.