Shortcuts

BLEU Score

Module Interface

class torchmetrics.BLEUScore(n_gram=4, smooth=False, weights=None, **kwargs)[source]

Calculate BLEU score of machine translated text with one or more references.

As input to forward and update the metric accepts the following input:

  • preds (Sequence): An iterable of machine translated corpus

  • target (Sequence): An iterable of iterables of reference corpus

As output of forward and update the metric returns the following output:

  • bleu (Tensor): A tensor with the BLEU Score

Parameters
Raises

ValueError – If a length of a list of weights is not None and not equal to n_gram.

Example

>>> from torchmetrics import BLEUScore
>>> preds = ['the cat is on the mat']
>>> target = [['there is a cat on the mat', 'a cat is on the mat']]
>>> bleu = BLEUScore()
>>> bleu(preds, target)
tensor(0.7598)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Functional Interface

torchmetrics.functional.bleu_score(preds, target, n_gram=4, smooth=False, weights=None)[source]

Calculate BLEU score of machine translated text with one or more references.

Parameters
  • preds (Union[str, Sequence[str]]) – An iterable of machine translated corpus

  • target (Sequence[Union[str, Sequence[str]]]) – An iterable of iterables of reference corpus

  • n_gram (int) – Gram value ranged from 1 to 4

  • smooth (bool) – Whether to apply smoothing – see [2]

  • weights (Optional[Sequence[float]]) – Weights used for unigrams, bigrams, etc. to calculate BLEU score. If not provided, uniform weights are used.

Return type

Tensor

Returns

Tensor with BLEU Score

Raises
  • ValueError – If preds and target corpus have different lengths.

  • ValueError – If a length of a list of weights is not None and not equal to n_gram.

Example

>>> from torchmetrics.functional import bleu_score
>>> preds = ['the cat is on the mat']
>>> target = [['there is a cat on the mat', 'a cat is on the mat']]
>>> bleu_score(preds, target)
tensor(0.7598)

References

[1] BLEU: a Method for Automatic Evaluation of Machine Translation by Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu BLEU

[2] Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-Bigram Statistics by Chin-Yew Lin and Franz Josef Och Machine Translation Evolution

Read the Docs v: v0.11.2
Versions
latest
stable
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.