Shortcuts

Image Gradients

Functional Interface

torchmetrics.functional.image_gradients(img)[source]

Computes Gradient Computation of Image of a given image using finite difference.

Parameters

img (Tensor) – An (N, C, H, W) input tensor where C is the number of image channels

Return type

Tuple[Tensor, Tensor]

Returns

Tuple of (dy, dx) with each gradient of shape [N, C, H, W]

Raises

Example

>>> from torchmetrics.functional import image_gradients
>>> image = torch.arange(0, 1*1*5*5, dtype=torch.float32)
>>> image = torch.reshape(image, (1, 1, 5, 5))
>>> dy, dx = image_gradients(image)
>>> dy[0, 0, :, :]
tensor([[5., 5., 5., 5., 5.],
        [5., 5., 5., 5., 5.],
        [5., 5., 5., 5., 5.],
        [5., 5., 5., 5., 5.],
        [0., 0., 0., 0., 0.]])

Note

The implementation follows the 1-step finite difference method as followed by the TF implementation. The values are organized such that the gradient of [I(x+1, y)-[I(x, y)]] are at the (x, y) location

Read the Docs v: v0.11.2
Versions
latest
stable
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.