ROC¶
Module Interface¶
- class torchmetrics.ROC(task: Literal['binary', 'multiclass', 'multilabel'], thresholds: Optional[Union[int, List[float], torch.Tensor]] = None, num_classes: Optional[int] = None, num_labels: Optional[int] = None, ignore_index: Optional[int] = None, validate_args: bool = True, **kwargs: Any)[source]
Computes the Receiver Operating Characteristic (ROC). The curve consist of multiple pairs of true positive rate (TPR) and false positive rate (FPR) values evaluated at different thresholds, such that the tradeoff between the two values can be seen.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
task
argument to either'binary'
,'multiclass'
ormultilabel
. See the documentation ofBinaryROC
,MulticlassROC
andMultilabelROC
for the specific details of each argument influence and examples.- Legacy Example:
>>> pred = torch.tensor([0.0, 1.0, 2.0, 3.0]) >>> target = torch.tensor([0, 1, 1, 1]) >>> roc = ROC(task="binary") >>> fpr, tpr, thresholds = roc(pred, target) >>> fpr tensor([0., 0., 0., 0., 1.]) >>> tpr tensor([0.0000, 0.3333, 0.6667, 1.0000, 1.0000]) >>> thresholds tensor([1.0000, 0.9526, 0.8808, 0.7311, 0.5000])
>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05], ... [0.05, 0.75, 0.05, 0.05], ... [0.05, 0.05, 0.75, 0.05], ... [0.05, 0.05, 0.05, 0.75]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> roc = ROC(task="multiclass", num_classes=4) >>> fpr, tpr, thresholds = roc(pred, target) >>> fpr [tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0.0000, 0.3333, 1.0000]), tensor([0.0000, 0.3333, 1.0000])] >>> tpr [tensor([0., 1., 1.]), tensor([0., 1., 1.]), tensor([0., 0., 1.]), tensor([0., 0., 1.])] >>> thresholds [tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500])]
>>> pred = torch.tensor([[0.8191, 0.3680, 0.1138], ... [0.3584, 0.7576, 0.1183], ... [0.2286, 0.3468, 0.1338], ... [0.8603, 0.0745, 0.1837]]) >>> target = torch.tensor([[1, 1, 0], [0, 1, 0], [0, 0, 0], [0, 1, 1]]) >>> roc = ROC(task='multilabel', num_labels=3) >>> fpr, tpr, thresholds = roc(pred, target) >>> fpr [tensor([0.0000, 0.3333, 0.3333, 0.6667, 1.0000]), tensor([0., 0., 0., 1., 1.]), tensor([0.0000, 0.0000, 0.3333, 0.6667, 1.0000])] >>> tpr [tensor([0., 0., 1., 1., 1.]), tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000]), tensor([0., 1., 1., 1., 1.])] >>> thresholds [tensor([1.0000, 0.8603, 0.8191, 0.3584, 0.2286]), tensor([1.0000, 0.7576, 0.3680, 0.3468, 0.0745]), tensor([1.0000, 0.1837, 0.1338, 0.1183, 0.1138])]
BinaryROC¶
- class torchmetrics.classification.BinaryROC(thresholds=None, ignore_index=None, validate_args=True, **kwargs)[source]
Computes the Receiver Operating Characteristic (ROC) for binary tasks. The curve consist of multiple pairs of true positive rate (TPR) and false positive rate (FPR) values evaluated at different thresholds, such that the tradeoff between the two values can be seen.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): A float tensor of shape(N, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.target
(Tensor
): An int tensor of shape(N, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified). The value 1 always encodes the positive class.
Note
Additional dimension
...
will be flattened into the batch dimension.As output to
forward
andcompute
the metric returns a tuple of 3 tensors containing:fpr
(Tensor
): A 1d tensor of size(n_thresholds+1, )
with false positive rate valuestpr
(Tensor
): A 1d tensor of size(n_thresholds+1, )
with true positive rate valuesthresholds
(Tensor
): A 1d tensor of size(n_thresholds, )
with decreasing threshold values
Note
The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size (constant memory).
Note
The outputted thresholds will be in reversed order to ensure that they corresponds to both fpr and tpr which are sorted in reversed order during their calculation, such that they are monotome increasing.
- Parameters
thresholds¶ (
Union
[int
,List
[float
],Tensor
,None
]) –Can be one of:
If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.
If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.
If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation
If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.
validate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
Example
>>> from torchmetrics.classification import BinaryROC >>> preds = torch.tensor([0, 0.5, 0.7, 0.8]) >>> target = torch.tensor([0, 1, 1, 0]) >>> metric = BinaryROC(thresholds=None) >>> metric(preds, target) (tensor([0.0000, 0.5000, 0.5000, 0.5000, 1.0000]), tensor([0.0000, 0.0000, 0.5000, 1.0000, 1.0000]), tensor([1.0000, 0.8000, 0.7000, 0.5000, 0.0000])) >>> broc = BinaryROC(thresholds=5) >>> broc(preds, target) (tensor([0.0000, 0.5000, 0.5000, 0.5000, 1.0000]), tensor([0., 0., 1., 1., 1.]), tensor([1.0000, 0.7500, 0.5000, 0.2500, 0.0000]))
Initializes internal Module state, shared by both nn.Module and ScriptModule.
MulticlassROC¶
- class torchmetrics.classification.MulticlassROC(num_classes, thresholds=None, ignore_index=None, validate_args=True, **kwargs)[source]
Computes the Receiver Operating Characteristic (ROC) for binary tasks. The curve consist of multiple pairs of true positive rate (TPR) and false positive rate (FPR) values evaluated at different thresholds, such that the tradeoff between the two values can be seen.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): A float tensor of shape(N, C, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply softmax per sample.target
(Tensor
): An int tensor of shape(N, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain values in the [0, n_classes-1] range (except if ignore_index is specified).
Note
Additional dimension
...
will be flattened into the batch dimension.As output to
forward
andcompute
the metric returns a tuple of either 3 tensors or 3 lists containingfpr
(Tensor
): if thresholds=None a list for each class is returned with an 1d tensor of size(n_thresholds+1, )
with false positive rate values (length may differ between classes). If thresholds is set to something else, then a single 2d tensor of size(n_classes, n_thresholds+1)
with false positive rate values is returned.tpr
(Tensor
): if thresholds=None a list for each class is returned with an 1d tensor of size(n_thresholds+1, )
with true positive rate values (length may differ between classes). If thresholds is set to something else, then a single 2d tensor of size(n_classes, n_thresholds+1)
with true positive rate values is returned.thresholds
(Tensor
): if thresholds=None a list for each class is returned with an 1d tensor of size(n_thresholds, )
with decreasing threshold values (length may differ between classes). If threshold is set to something else, then a single 1d tensor of size(n_thresholds, )
is returned with shared threshold values for all classes.
Note
The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size (constant memory).
Note
Note that outputted thresholds will be in reversed order to ensure that they corresponds to both fpr and tpr which are sorted in reversed order during their calculation, such that they are monotome increasing.
- Parameters
num_classes¶ (
int
) – Integer specifing the number of classesthresholds¶ (
Union
[int
,List
[float
],Tensor
,None
]) –Can be one of:
If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.
If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.
If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation
If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.
validate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
Example
>>> from torchmetrics.classification import MulticlassROC >>> preds = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05], ... [0.05, 0.75, 0.05, 0.05, 0.05], ... [0.05, 0.05, 0.75, 0.05, 0.05], ... [0.05, 0.05, 0.05, 0.75, 0.05]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> metric = MulticlassROC(num_classes=5, thresholds=None) >>> fpr, tpr, thresholds = metric(preds, target) >>> fpr [tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0.0000, 0.3333, 1.0000]), tensor([0.0000, 0.3333, 1.0000]), tensor([0., 1.])] >>> tpr [tensor([0., 1., 1.]), tensor([0., 1., 1.]), tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0., 0.])] >>> thresholds [tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.0500])] >>> mcroc = MulticlassROC(num_classes=5, thresholds=5) >>> mcroc(preds, target) (tensor([[0.0000, 0.0000, 0.0000, 0.0000, 1.0000], [0.0000, 0.0000, 0.0000, 0.0000, 1.0000], [0.0000, 0.3333, 0.3333, 0.3333, 1.0000], [0.0000, 0.3333, 0.3333, 0.3333, 1.0000], [0.0000, 0.0000, 0.0000, 0.0000, 1.0000]]), tensor([[0., 1., 1., 1., 1.], [0., 1., 1., 1., 1.], [0., 0., 0., 0., 1.], [0., 0., 0., 0., 1.], [0., 0., 0., 0., 0.]]), tensor([1.0000, 0.7500, 0.5000, 0.2500, 0.0000]))
Initializes internal Module state, shared by both nn.Module and ScriptModule.
MultilabelROC¶
- class torchmetrics.classification.MultilabelROC(num_labels, thresholds=None, ignore_index=None, validate_args=True, **kwargs)[source]
Computes the Receiver Operating Characteristic (ROC) for binary tasks. The curve consist of multiple pairs of true positive rate (TPR) and false positive rate (FPR) values evaluated at different thresholds, such that the tradeoff between the two values can be seen.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): A float tensor of shape(N, C, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.target
(Tensor
): An int tensor of shape(N, C, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified).
Note
Additional dimension
...
will be flattened into the batch dimension.As output to
forward
andcompute
the metric returns a tuple of either 3 tensors or 3 lists containingfpr
(Tensor
): if thresholds=None a list for each label is returned with an 1d tensor of size(n_thresholds+1, )
with false positive rate values (length may differ between labels). If thresholds is set to something else, then a single 2d tensor of size(n_labels, n_thresholds+1)
with false positive rate values is returned.tpr
(Tensor
): if thresholds=None a list for each label is returned with an 1d tensor of size(n_thresholds+1, )
with true positive rate values (length may differ between labels). If thresholds is set to something else, then a single 2d tensor of size(n_labels, n_thresholds+1)
with true positive rate values is returned.thresholds
(Tensor
): if thresholds=None a list for each label is returned with an 1d tensor of size(n_thresholds, )
with decreasing threshold values (length may differ between labels). If threshold is set to something else, then a single 1d tensor of size(n_thresholds, )
is returned with shared threshold values for all labels.
Note
The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size (constant memory).
Note
The outputted thresholds will be in reversed order to ensure that they corresponds to both fpr and tpr which are sorted in reversed order during their calculation, such that they are monotome increasing.
- Parameters
thresholds¶ (
Union
[int
,List
[float
],Tensor
,None
]) –Can be one of:
If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.
If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.
If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation
If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.
validate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
Example
>>> from torchmetrics.classification import MultilabelROC >>> preds = torch.tensor([[0.75, 0.05, 0.35], ... [0.45, 0.75, 0.05], ... [0.05, 0.55, 0.75], ... [0.05, 0.65, 0.05]]) >>> target = torch.tensor([[1, 0, 1], ... [0, 0, 0], ... [0, 1, 1], ... [1, 1, 1]]) >>> metric = MultilabelROC(num_labels=3, thresholds=None) >>> fpr, tpr, thresholds = metric(preds, target) >>> fpr [tensor([0.0000, 0.0000, 0.5000, 1.0000]), tensor([0.0000, 0.5000, 0.5000, 0.5000, 1.0000]), tensor([0., 0., 0., 1.])] >>> tpr [tensor([0.0000, 0.5000, 0.5000, 1.0000]), tensor([0.0000, 0.0000, 0.5000, 1.0000, 1.0000]), tensor([0.0000, 0.3333, 0.6667, 1.0000])] >>> thresholds [tensor([1.0000, 0.7500, 0.4500, 0.0500]), tensor([1.0000, 0.7500, 0.6500, 0.5500, 0.0500]), tensor([1.0000, 0.7500, 0.3500, 0.0500])] >>> mlroc = MultilabelROC(num_labels=3, thresholds=5) >>> mlroc(preds, target) (tensor([[0.0000, 0.0000, 0.0000, 0.5000, 1.0000], [0.0000, 0.5000, 0.5000, 0.5000, 1.0000], [0.0000, 0.0000, 0.0000, 0.0000, 1.0000]]), tensor([[0.0000, 0.5000, 0.5000, 0.5000, 1.0000], [0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.0000, 0.3333, 0.3333, 0.6667, 1.0000]]), tensor([1.0000, 0.7500, 0.5000, 0.2500, 0.0000]))
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Functional Interface¶
- torchmetrics.functional.roc(preds, target, task, thresholds=None, num_classes=None, num_labels=None, ignore_index=None, validate_args=True)[source]
Computes the Receiver Operating Characteristic (ROC). The curve consist of multiple pairs of true positive rate (TPR) and false positive rate (FPR) values evaluated at different thresholds, such that the tradeoff between the two values can be seen.
This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
task
argument to either'binary'
,'multiclass'
ormultilabel
. See the documentation ofbinary_roc()
,multiclass_roc()
andmultilabel_roc()
for the specific details of each argument influence and examples.- Legacy Example:
>>> pred = torch.tensor([0.0, 1.0, 2.0, 3.0]) >>> target = torch.tensor([0, 1, 1, 1]) >>> fpr, tpr, thresholds = roc(pred, target, task='binary') >>> fpr tensor([0., 0., 0., 0., 1.]) >>> tpr tensor([0.0000, 0.3333, 0.6667, 1.0000, 1.0000]) >>> thresholds tensor([1.0000, 0.9526, 0.8808, 0.7311, 0.5000])
>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05], ... [0.05, 0.75, 0.05, 0.05], ... [0.05, 0.05, 0.75, 0.05], ... [0.05, 0.05, 0.05, 0.75]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> fpr, tpr, thresholds = roc(pred, target, task='multiclass', num_classes=4) >>> fpr [tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0.0000, 0.3333, 1.0000]), tensor([0.0000, 0.3333, 1.0000])] >>> tpr [tensor([0., 1., 1.]), tensor([0., 1., 1.]), tensor([0., 0., 1.]), tensor([0., 0., 1.])] >>> thresholds [tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500])]
>>> pred = torch.tensor([[0.8191, 0.3680, 0.1138], ... [0.3584, 0.7576, 0.1183], ... [0.2286, 0.3468, 0.1338], ... [0.8603, 0.0745, 0.1837]]) >>> target = torch.tensor([[1, 1, 0], [0, 1, 0], [0, 0, 0], [0, 1, 1]]) >>> fpr, tpr, thresholds = roc(pred, target, task='multilabel', num_labels=3) >>> fpr [tensor([0.0000, 0.3333, 0.3333, 0.6667, 1.0000]), tensor([0., 0., 0., 1., 1.]), tensor([0.0000, 0.0000, 0.3333, 0.6667, 1.0000])] >>> tpr [tensor([0., 0., 1., 1., 1.]), tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000]), tensor([0., 1., 1., 1., 1.])] >>> thresholds [tensor([1.0000, 0.8603, 0.8191, 0.3584, 0.2286]), tensor([1.0000, 0.7576, 0.3680, 0.3468, 0.0745]), tensor([1.0000, 0.1837, 0.1338, 0.1183, 0.1138])]
binary_roc¶
- torchmetrics.functional.classification.binary_roc(preds, target, thresholds=None, ignore_index=None, validate_args=True)[source]
Computes the Receiver Operating Characteristic (ROC) for binary tasks. The curve consist of multiple pairs of true positive rate (TPR) and false positive rate (FPR) values evaluated at different thresholds, such that the tradeoff between the two values can be seen.
Accepts the following input tensors:
preds
(float tensor):(N, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.target
(int tensor):(N, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified). The value 1 always encodes the positive class.
Additional dimension
...
will be flattened into the batch dimension.The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size (constant memory).
Note that outputted thresholds will be in reversed order to ensure that they corresponds to both fpr and tpr which are sorted in reversed order during their calculation, such that they are monotome increasing.
- Parameters
thresholds¶ (
Union
[int
,List
[float
],Tensor
,None
]) –Can be one of:
If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.
If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.
If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation
If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.
validate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Returns
a tuple of 3 tensors containing:
fpr: an 1d tensor of size (n_thresholds+1, ) with false positive rate values
tpr: an 1d tensor of size (n_thresholds+1, ) with true positive rate values
thresholds: an 1d tensor of size (n_thresholds, ) with decreasing threshold values
- Return type
(tuple)
Example
>>> from torchmetrics.functional.classification import binary_roc >>> preds = torch.tensor([0, 0.5, 0.7, 0.8]) >>> target = torch.tensor([0, 1, 1, 0]) >>> binary_roc(preds, target, thresholds=None) (tensor([0.0000, 0.5000, 0.5000, 0.5000, 1.0000]), tensor([0.0000, 0.0000, 0.5000, 1.0000, 1.0000]), tensor([1.0000, 0.8000, 0.7000, 0.5000, 0.0000])) >>> binary_roc(preds, target, thresholds=5) (tensor([0.0000, 0.5000, 0.5000, 0.5000, 1.0000]), tensor([0., 0., 1., 1., 1.]), tensor([1.0000, 0.7500, 0.5000, 0.2500, 0.0000]))
multiclass_roc¶
- torchmetrics.functional.classification.multiclass_roc(preds, target, num_classes, thresholds=None, ignore_index=None, validate_args=True)[source]
Computes the Receiver Operating Characteristic (ROC) for multiclass tasks. The curve consist of multiple pairs of true positive rate (TPR) and false positive rate (FPR) values evaluated at different thresholds, such that the tradeoff between the two values can be seen.
Accepts the following input tensors:
preds
(float tensor):(N, C, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply softmax per sample.target
(int tensor):(N, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain values in the [0, n_classes-1] range (except if ignore_index is specified).
Additional dimension
...
will be flattened into the batch dimension.The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size (constant memory).
Note that outputted thresholds will be in reversed order to ensure that they corresponds to both fpr and tpr which are sorted in reversed order during their calculation, such that they are monotome increasing.
- Parameters
num_classes¶ (
int
) – Integer specifing the number of classesthresholds¶ (
Union
[int
,List
[float
],Tensor
,None
]) –Can be one of:
If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.
If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.
If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation
If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.
validate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Returns
a tuple of either 3 tensors or 3 lists containing
fpr: if thresholds=None a list for each class is returned with an 1d tensor of size (n_thresholds+1, ) with false positive rate values (length may differ between classes). If thresholds is set to something else, then a single 2d tensor of size (n_classes, n_thresholds+1) with false positive rate values is returned.
tpr: if thresholds=None a list for each class is returned with an 1d tensor of size (n_thresholds+1, ) with true positive rate values (length may differ between classes). If thresholds is set to something else, then a single 2d tensor of size (n_classes, n_thresholds+1) with true positive rate values is returned.
thresholds: if thresholds=None a list for each class is returned with an 1d tensor of size (n_thresholds, ) with decreasing threshold values (length may differ between classes). If threshold is set to something else, then a single 1d tensor of size (n_thresholds, ) is returned with shared threshold values for all classes.
- Return type
(tuple)
Example
>>> from torchmetrics.functional.classification import multiclass_roc >>> preds = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05], ... [0.05, 0.75, 0.05, 0.05, 0.05], ... [0.05, 0.05, 0.75, 0.05, 0.05], ... [0.05, 0.05, 0.05, 0.75, 0.05]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> fpr, tpr, thresholds = multiclass_roc( ... preds, target, num_classes=5, thresholds=None ... ) >>> fpr [tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0.0000, 0.3333, 1.0000]), tensor([0.0000, 0.3333, 1.0000]), tensor([0., 1.])] >>> tpr [tensor([0., 1., 1.]), tensor([0., 1., 1.]), tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0., 0.])] >>> thresholds [tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.0500])] >>> multiclass_roc( ... preds, target, num_classes=5, thresholds=5 ... ) (tensor([[0.0000, 0.0000, 0.0000, 0.0000, 1.0000], [0.0000, 0.0000, 0.0000, 0.0000, 1.0000], [0.0000, 0.3333, 0.3333, 0.3333, 1.0000], [0.0000, 0.3333, 0.3333, 0.3333, 1.0000], [0.0000, 0.0000, 0.0000, 0.0000, 1.0000]]), tensor([[0., 1., 1., 1., 1.], [0., 1., 1., 1., 1.], [0., 0., 0., 0., 1.], [0., 0., 0., 0., 1.], [0., 0., 0., 0., 0.]]), tensor([1.0000, 0.7500, 0.5000, 0.2500, 0.0000]))
multilabel_roc¶
- torchmetrics.functional.classification.multilabel_roc(preds, target, num_labels, thresholds=None, ignore_index=None, validate_args=True)[source]
Computes the Receiver Operating Characteristic (ROC) for multilabel tasks. The curve consist of multiple pairs of true positive rate (TPR) and false positive rate (FPR) values evaluated at different thresholds, such that the tradeoff between the two values can be seen.
Accepts the following input tensors:
preds
(float tensor):(N, C, ...)
. Preds should be a tensor containing probabilities or logits for each observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply sigmoid per element.target
(int tensor):(N, C, ...)
. Target should be a tensor containing ground truth labels, and therefore only contain {0,1} values (except if ignore_index is specified).
Additional dimension
...
will be flattened into the batch dimension.The implementation both supports calculating the metric in a non-binned but accurate version and a binned version that is less accurate but more memory efficient. Setting the thresholds argument to None will activate the non-binned version that uses memory of size whereas setting the thresholds argument to either an integer, list or a 1d tensor will use a binned version that uses memory of size (constant memory).
Note that outputted thresholds will be in reversed order to ensure that they corresponds to both fpr and tpr which are sorted in reversed order during their calculation, such that they are monotome increasing.
- Parameters
thresholds¶ (
Union
[int
,List
[float
],Tensor
,None
]) –Can be one of:
If set to None, will use a non-binned approach where thresholds are dynamically calculated from all the data. Most accurate but also most memory consuming approach.
If set to an int (larger than 1), will use that number of thresholds linearly spaced from 0 to 1 as bins for the calculation.
If set to an list of floats, will use the indicated thresholds in the list as bins for the calculation
If set to an 1d tensor of floats, will use the indicated thresholds in the tensor as bins for the calculation.
validate_args¶ (
bool
) – bool indicating if input arguments and tensors should be validated for correctness. Set toFalse
for faster computations.
- Returns
a tuple of either 3 tensors or 3 lists containing
fpr: if thresholds=None a list for each label is returned with an 1d tensor of size (n_thresholds+1, ) with false positive rate values (length may differ between labels). If thresholds is set to something else, then a single 2d tensor of size (n_labels, n_thresholds+1) with false positive rate values is returned.
tpr: if thresholds=None a list for each label is returned with an 1d tensor of size (n_thresholds+1, ) with true positive rate values (length may differ between labels). If thresholds is set to something else, then a single 2d tensor of size (n_labels, n_thresholds+1) with true positive rate values is returned.
thresholds: if thresholds=None a list for each label is returned with an 1d tensor of size (n_thresholds, ) with decreasing threshold values (length may differ between labels). If threshold is set to something else, then a single 1d tensor of size (n_thresholds, ) is returned with shared threshold values for all labels.
- Return type
(tuple)
Example
>>> from torchmetrics.functional.classification import multilabel_roc >>> preds = torch.tensor([[0.75, 0.05, 0.35], ... [0.45, 0.75, 0.05], ... [0.05, 0.55, 0.75], ... [0.05, 0.65, 0.05]]) >>> target = torch.tensor([[1, 0, 1], ... [0, 0, 0], ... [0, 1, 1], ... [1, 1, 1]]) >>> fpr, tpr, thresholds = multilabel_roc( ... preds, target, num_labels=3, thresholds=None ... ) >>> fpr [tensor([0.0000, 0.0000, 0.5000, 1.0000]), tensor([0.0000, 0.5000, 0.5000, 0.5000, 1.0000]), tensor([0., 0., 0., 1.])] >>> tpr [tensor([0.0000, 0.5000, 0.5000, 1.0000]), tensor([0.0000, 0.0000, 0.5000, 1.0000, 1.0000]), tensor([0.0000, 0.3333, 0.6667, 1.0000])] >>> thresholds [tensor([1.0000, 0.7500, 0.4500, 0.0500]), tensor([1.0000, 0.7500, 0.6500, 0.5500, 0.0500]), tensor([1.0000, 0.7500, 0.3500, 0.0500])] >>> multilabel_roc( ... preds, target, num_labels=3, thresholds=5 ... ) (tensor([[0.0000, 0.0000, 0.0000, 0.5000, 1.0000], [0.0000, 0.5000, 0.5000, 0.5000, 1.0000], [0.0000, 0.0000, 0.0000, 0.0000, 1.0000]]), tensor([[0.0000, 0.5000, 0.5000, 0.5000, 1.0000], [0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.0000, 0.3333, 0.3333, 0.6667, 1.0000]]), tensor([1.0000, 0.7500, 0.5000, 0.2500, 0.0000]))