Shortcuts

Log Cosh Error

Module Interface

class torchmetrics.LogCoshError(num_outputs=1, **kwargs)[source]

Compute the LogCosh Error.

\text{LogCoshError} = \log\left(\frac{\exp(\hat{y} - y) + \exp(\hat{y - y})}{2}\right)

Where y is a tensor of target values, and \hat{y} is a tensor of predictions.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): Estimated labels with shape (batch_size,) or (batch_size, num_outputs)

  • target (Tensor): Ground truth labels with shape (batch_size,) or (batch_size, num_outputs)

As output of forward and compute the metric returns the following output:

  • log_cosh_error (Tensor): A tensor with the log cosh error

Parameters
Example (single output regression)::
>>> from torchmetrics import LogCoshError
>>> preds = torch.tensor([3.0, 5.0, 2.5, 7.0])
>>> target = torch.tensor([2.5, 5.0, 4.0, 8.0])
>>> log_cosh_error = LogCoshError()
>>> log_cosh_error(preds, target)
tensor(0.3523)
Example (multi output regression)::
>>> from torchmetrics import LogCoshError
>>> preds = torch.tensor([[3.0, 5.0, 1.2], [-2.1, 2.5, 7.0]])
>>> target = torch.tensor([[2.5, 5.0, 1.3], [0.3, 4.0, 8.0]])
>>> log_cosh_error = LogCoshError(num_outputs=3)
>>> log_cosh_error(preds, target)
tensor([0.9176, 0.4277, 0.2194])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Functional Interface

torchmetrics.functional.log_cosh_error(preds, target)[source]

Compute the LogCosh Error.

\text{LogCoshError} = \log\left(\frac{\exp(\hat{y} - y) + \exp(\hat{y - y})}{2}\right)

Where y is a tensor of target values, and \hat{y} is a tensor of predictions.

Parameters
  • preds (Tensor) – estimated labels with shape (batch_size,) or (batch_size, num_outputs)`

  • target (Tensor) – ground truth labels with shape (batch_size,) or (batch_size, num_outputs)`

Return type

Tensor

Returns

Tensor with LogCosh error

Example (single output regression)::
>>> from torchmetrics.functional import log_cosh_error
>>> preds = torch.tensor([3.0, 5.0, 2.5, 7.0])
>>> target = torch.tensor([2.5, 5.0, 4.0, 8.0])
>>> log_cosh_error(preds, target)
tensor(0.3523)
Example (multi output regression)::
>>> from torchmetrics.functional import log_cosh_error
>>> preds = torch.tensor([[3.0, 5.0, 1.2], [-2.1, 2.5, 7.0]])
>>> target = torch.tensor([[2.5, 5.0, 1.3], [0.3, 4.0, 8.0]])
>>> log_cosh_error(preds, target)
tensor([0.9176, 0.4277, 0.2194])
Read the Docs v: v0.11.3
Versions
latest
stable
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.