Shortcuts

Cosine Similarity

Module Interface

class torchmetrics.CosineSimilarity(reduction='sum', **kwargs)[source]

Computes the Cosine Similarity between targets and predictions:

cos_{sim}(x,y) = \frac{x \cdot y}{||x|| \cdot ||y||} =
\frac{\sum_{i=1}^n x_i y_i}{\sqrt{\sum_{i=1}^n x_i^2}\sqrt{\sum_{i=1}^n y_i^2}}

where y is a tensor of target values, and x is a tensor of predictions.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): Predicted float tensor with shape (N,d)

  • target (Tensor): Ground truth float tensor with shape (N,d)

As output of forward and compute the metric returns the following output:

  • cosine_similarity (Tensor): A float tensor with the cosine similarity

Parameters
  • reduction (Literal[‘mean’, ‘sum’, ‘none’, None]) – how to reduce over the batch dimension using ‘sum’, ‘mean’ or ‘none’ (taking the individual scores)

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> from torchmetrics import CosineSimilarity
>>> target = torch.tensor([[0, 1], [1, 1]])
>>> preds = torch.tensor([[0, 1], [0, 1]])
>>> cosine_similarity = CosineSimilarity(reduction = 'mean')
>>> cosine_similarity(preds, target)
tensor(0.8536)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Functional Interface

torchmetrics.functional.cosine_similarity(preds, target, reduction='sum')[source]

Computes the Cosine Similarity between targets and predictions:

cos_{sim}(x,y) = \frac{x \cdot y}{||x|| \cdot ||y||} =
\frac{\sum_{i=1}^n x_i y_i}{\sqrt{\sum_{i=1}^n x_i^2}\sqrt{\sum_{i=1}^n y_i^2}}

where y is a tensor of target values, and x is a tensor of predictions.

Parameters
  • preds (Tensor) – Predicted tensor with shape (N,d)

  • target (Tensor) – Ground truth tensor with shape (N,d)

  • reduction (Optional[str]) – The method of reducing along the batch dimension using sum, mean or taking the individual scores

Example

>>> from torchmetrics.functional.regression import cosine_similarity
>>> target = torch.tensor([[1, 2, 3, 4],
...                        [1, 2, 3, 4]])
>>> preds = torch.tensor([[1, 2, 3, 4],
...                       [-1, -2, -3, -4]])
>>> cosine_similarity(preds, target, 'none')
tensor([ 1.0000, -1.0000])
Return type

Tensor

Read the Docs v: v0.11.3
Versions
latest
stable
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.