Pearson Corr. Coef.¶
Module Interface¶
- class torchmetrics.PearsonCorrCoef(num_outputs=1, **kwargs)[source]
Computes Pearson Correlation Coefficient:
Where
is a tensor of target values, and
is a tensor of predictions.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): either single output float tensor with shape(N,)
or multioutput float tensor of shape(N,d)
target
(Tensor
): either single output tensor with shape(N,)
or multioutput tensor of shape(N,d)
As output of
forward
andcompute
the metric returns the following output:pearson
(Tensor
): A tensor with the Pearson Correlation Coefficient
- Parameters
num_outputs¶ (
int
) – Number of outputs in multioutput settingkwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Example (single output regression):
>>> from torchmetrics import PearsonCorrCoef >>> target = torch.tensor([3, -0.5, 2, 7]) >>> preds = torch.tensor([2.5, 0.0, 2, 8]) >>> pearson = PearsonCorrCoef() >>> pearson(preds, target) tensor(0.9849)
- Example (multi output regression):
>>> from torchmetrics import PearsonCorrCoef >>> target = torch.tensor([[3, -0.5], [2, 7]]) >>> preds = torch.tensor([[2.5, 0.0], [2, 8]]) >>> pearson = PearsonCorrCoef(num_outputs=2) >>> pearson(preds, target) tensor([1., 1.])
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Functional Interface¶
- torchmetrics.functional.pearson_corrcoef(preds, target)[source]
Computes pearson correlation coefficient.
- Example (single output regression):
>>> from torchmetrics.functional import pearson_corrcoef >>> target = torch.tensor([3, -0.5, 2, 7]) >>> preds = torch.tensor([2.5, 0.0, 2, 8]) >>> pearson_corrcoef(preds, target) tensor(0.9849)
- Example (multi output regression):
>>> from torchmetrics.functional import pearson_corrcoef >>> target = torch.tensor([[3, -0.5], [2, 7]]) >>> preds = torch.tensor([[2.5, 0.0], [2, 8]]) >>> pearson_corrcoef(preds, target) tensor([1., 1.])
- Return type