Shortcuts

Structural Similarity Index Measure (SSIM)

Module Interface

class torchmetrics.StructuralSimilarityIndexMeasure(gaussian_kernel=True, sigma=1.5, kernel_size=11, reduction='elementwise_mean', data_range=None, k1=0.01, k2=0.03, return_full_image=False, return_contrast_sensitivity=False, **kwargs)[source]

Computes Structual Similarity Index Measure (SSIM).

As input to forward and update the metric accepts the following input

  • preds (Tensor): Predictions from model

  • target (Tensor): Ground truth values

As output of forward and compute the metric returns the following output

  • ssim (Tensor): if reduction!='none' returns float scalar tensor with average SSIM value over sample else returns tensor of shape (N,) with SSIM values per sample

Parameters
  • preds – estimated image

  • target – ground truth image

  • gaussian_kernel (bool) – If True (default), a gaussian kernel is used, if False a uniform kernel is used

  • sigma (Union[float, Sequence[float]]) – Standard deviation of the gaussian kernel, anisotropic kernels are possible. Ignored if a uniform kernel is used

  • kernel_size (Union[int, Sequence[int]]) – the size of the uniform kernel, anisotropic kernels are possible. Ignored if a Gaussian kernel is used

  • reduction (Literal[‘elementwise_mean’, ‘sum’, ‘none’, None]) –

    a method to reduce metric score over individual batch scores

    • 'elementwise_mean': takes the mean

    • 'sum': takes the sum

    • 'none' or None: no reduction will be applied

  • data_range (Optional[float]) – Range of the image. If None, it is determined from the image (max - min)

  • k1 (float) – Parameter of SSIM.

  • k2 (float) – Parameter of SSIM.

  • return_full_image (bool) – If true, the full ssim image is returned as a second argument. Mutually exclusive with return_contrast_sensitivity

  • return_contrast_sensitivity (bool) – If true, the constant term is returned as a second argument. The luminance term can be obtained with luminance=ssim/contrast Mutually exclusive with return_full_image

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> from torchmetrics import StructuralSimilarityIndexMeasure
>>> import torch
>>> preds = torch.rand([3, 3, 256, 256])
>>> target = preds * 0.75
>>> ssim = StructuralSimilarityIndexMeasure(data_range=1.0)
>>> ssim(preds, target)
tensor(0.9219)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Functional Interface

torchmetrics.functional.structural_similarity_index_measure(preds, target, gaussian_kernel=True, sigma=1.5, kernel_size=11, reduction='elementwise_mean', data_range=None, k1=0.01, k2=0.03, return_full_image=False, return_contrast_sensitivity=False)[source]

Computes Structual Similarity Index Measure.

Parameters
  • preds (Tensor) – estimated image

  • target (Tensor) – ground truth image

  • gaussian_kernel (bool) – If true (default), a gaussian kernel is used, if false a uniform kernel is used

  • sigma (Union[float, Sequence[float]]) – Standard deviation of the gaussian kernel, anisotropic kernels are possible. Ignored if a uniform kernel is used

  • kernel_size (Union[int, Sequence[int]]) – the size of the uniform kernel, anisotropic kernels are possible. Ignored if a Gaussian kernel is used

  • reduction (Literal[‘elementwise_mean’, ‘sum’, ‘none’, None]) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean

    • 'sum': takes the sum

    • 'none' or None: no reduction will be applied

  • data_range (Optional[float]) – Range of the image. If None, it is determined from the image (max - min)

  • k1 (float) – Parameter of SSIM.

  • k2 (float) – Parameter of SSIM.

  • return_full_image (bool) – If true, the full ssim image is returned as a second argument. Mutually exclusive with return_contrast_sensitivity

  • return_contrast_sensitivity (bool) – If true, the constant term is returned as a second argument. The luminance term can be obtained with luminance=ssim/contrast Mutually exclusive with return_full_image

Return type

Union[Tensor, Tuple[Tensor, Tensor]]

Returns

Tensor with SSIM score

Raises
  • TypeError – If preds and target don’t have the same data type.

  • ValueError – If preds and target don’t have BxCxHxW shape.

  • ValueError – If the length of kernel_size or sigma is not 2.

  • ValueError – If one of the elements of kernel_size is not an odd positive number.

  • ValueError – If one of the elements of sigma is not a positive number.

Example

>>> from torchmetrics.functional import structural_similarity_index_measure
>>> preds = torch.rand([3, 3, 256, 256])
>>> target = preds * 0.75
>>> structural_similarity_index_measure(preds, target)
tensor(0.9219)
Read the Docs v: v0.11.3
Versions
latest
stable
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.