Mean Absolute Error (MAE)¶
Module Interface¶
- class torchmetrics.MeanAbsoluteError(**kwargs)[source]
Computes Mean Absolute Error (MAE):
Where
is a tensor of target values, and
is a tensor of predictions.
As input to
forward
andupdate
the metric accepts the following input:As output of
forward
andcompute
the metric returns the following output:mean_absolute_error
(Tensor
): A tensor with the mean absolute error over the state
- Parameters
kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
Example
>>> from torchmetrics import MeanAbsoluteError >>> target = torch.tensor([3.0, -0.5, 2.0, 7.0]) >>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0]) >>> mean_absolute_error = MeanAbsoluteError() >>> mean_absolute_error(preds, target) tensor(0.5000)
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Functional Interface¶
- torchmetrics.functional.mean_absolute_error(preds, target)[source]
Computes mean absolute error.
- Parameters
- Return type
- Returns
Tensor with MAE
Example
>>> from torchmetrics.functional import mean_absolute_error >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> mean_absolute_error(x, y) tensor(0.2500)