Shortcuts

Sum

Module Interface

class torchmetrics.aggregation.SumMetric(nan_strategy='warn', **kwargs)[source]

Aggregate a stream of value into their sum.

As input to forward and update the metric accepts the following input

  • value (float or Tensor): a single float or an tensor of float values with arbitary shape (...,).

As output of forward and compute the metric returns the following output

  • agg (Tensor): scalar float tensor with aggregated sum over all inputs received

Parameters:
  • nan_strategy (Union[str, float]) – options: - 'error': if any nan values are encounted will give a RuntimeError - 'warn': if any nan values are encounted will give a warning and continue - 'ignore': all nan values are silently removed - a float: if a float is provided will impude any nan values with this value

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Raises:

ValueError – If nan_strategy is not one of error, warn, ignore or a float

Example

>>> from torch import tensor
>>> from torchmetrics.aggregation import SumMetric
>>> metric = SumMetric()
>>> metric.update(1)
>>> metric.update(tensor([2, 3]))
>>> metric.compute()
tensor(6.)
plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

Tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>> # Example plotting a single value
>>> from torchmetrics.aggregation import SumMetric
>>> metric = SumMetric()
>>> metric.update([1, 2, 3])
>>> fig_, ax_ = metric.plot()
../_images/sum-1.png
>>> # Example plotting multiple values
>>> from torch import rand, randint
>>> from torchmetrics.aggregation import SumMetric
>>> metric = SumMetric()
>>> values = [ ]
>>> for i in range(10):
...     values.append(metric([i, i+1]))
>>> fig_, ax_ = metric.plot(values)
../_images/sum-2.png
Read the Docs v: stable
Versions
latest
stable
v1.1.0
v1.0.3
v1.0.2
v1.0.1
v1.0.0
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.