Spearman Corr. Coef.¶
Module Interface¶
- class torchmetrics.SpearmanCorrCoef(num_outputs=1, **kwargs)[source]
Computes spearmans rank correlation coefficient.
where
and
are the rank associated to the variables
and
. Spearmans correlations coefficient corresponds to the standard pearsons correlation coefficient calculated on the rank variables.
As input to
forward
andupdate
the metric accepts the following input:preds
(Tensor
): Predictions from model in float tensor with shape(N,d)
target
(Tensor
): Ground truth values in float tensor with shape(N,d)
As output of
forward
andcompute
the metric returns the following output:spearman
(Tensor
): A tensor with the spearman correlation(s)
- Parameters
num_outputs¶ (
int
) – Number of outputs in multioutput settingkwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
- Example (single output regression):
>>> from torchmetrics import SpearmanCorrCoef >>> target = torch.tensor([3, -0.5, 2, 7]) >>> preds = torch.tensor([2.5, 0.0, 2, 8]) >>> spearman = SpearmanCorrCoef() >>> spearman(preds, target) tensor(1.0000)
- Example (multi output regression):
>>> from torchmetrics import SpearmanCorrCoef >>> target = torch.tensor([[3, -0.5], [2, 7]]) >>> preds = torch.tensor([[2.5, 0.0], [2, 8]]) >>> spearman = SpearmanCorrCoef(num_outputs=2) >>> spearman(preds, target) tensor([1.0000, 1.0000])
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Functional Interface¶
- torchmetrics.functional.spearman_corrcoef(preds, target)[source]
Computes spearmans rank correlation coefficient:
where
and
are the rank associated to the variables x and y. Spearmans correlations coefficient corresponds to the standard pearsons correlation coefficient calculated on the rank variables.
- Example (single output regression):
>>> from torchmetrics.functional import spearman_corrcoef >>> target = torch.tensor([3, -0.5, 2, 7]) >>> preds = torch.tensor([2.5, 0.0, 2, 8]) >>> spearman_corrcoef(preds, target) tensor(1.0000)
- Example (multi output regression):
>>> from torchmetrics.functional import spearman_corrcoef >>> target = torch.tensor([[3, -0.5], [2, 7]]) >>> preds = torch.tensor([[2.5, 0.0], [2, 8]]) >>> spearman_corrcoef(preds, target) tensor([1.0000, 1.0000])
- Return type