Shortcuts

Spearman Corr. Coef.

Module Interface

class torchmetrics.SpearmanCorrCoef(num_outputs=1, **kwargs)[source]

Computes spearmans rank correlation coefficient.

where rg_x and rg_y are the rank associated to the variables x and y. Spearmans correlations coefficient corresponds to the standard pearsons correlation coefficient calculated on the rank variables.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): Predictions from model in float tensor with shape (N,d)

  • target (Tensor): Ground truth values in float tensor with shape (N,d)

As output of forward and compute the metric returns the following output:

  • spearman (Tensor): A tensor with the spearman correlation(s)

Parameters
Example (single output regression):
>>> from torchmetrics import SpearmanCorrCoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> spearman = SpearmanCorrCoef()
>>> spearman(preds, target)
tensor(1.0000)
Example (multi output regression):
>>> from torchmetrics import SpearmanCorrCoef
>>> target = torch.tensor([[3, -0.5], [2, 7]])
>>> preds = torch.tensor([[2.5, 0.0], [2, 8]])
>>> spearman = SpearmanCorrCoef(num_outputs=2)
>>> spearman(preds, target)
tensor([1.0000, 1.0000])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Functional Interface

torchmetrics.functional.spearman_corrcoef(preds, target)[source]

Computes spearmans rank correlation coefficient:

where rg_x and rg_y are the rank associated to the variables x and y. Spearmans correlations coefficient corresponds to the standard pearsons correlation coefficient calculated on the rank variables.

Parameters
  • preds (Tensor) – estimated scores

  • target (Tensor) – ground truth scores

Example (single output regression):
>>> from torchmetrics.functional import spearman_corrcoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> spearman_corrcoef(preds, target)
tensor(1.0000)
Example (multi output regression):
>>> from torchmetrics.functional import spearman_corrcoef
>>> target = torch.tensor([[3, -0.5], [2, 7]])
>>> preds = torch.tensor([[2.5, 0.0], [2, 8]])
>>> spearman_corrcoef(preds, target)
tensor([1.0000, 1.0000])
Return type

Tensor

Read the Docs v: stable
Versions
latest
stable
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.