Shortcuts

Minkowski Distance

Module Interface

class torchmetrics.MinkowskiDistance(p, **kwargs)[source]

Compute Minkowski Distance.

\[d_{\text{Minkowski}} = \sum_{i}^N (| y_i - \hat{y_i} |^p)^\frac{1}{p}\]
where
math:

y is a tensor of target values,

math:

hat{y} is a tensor of predictions,

math:

p is a non-negative integer or floating-point number

This metric can be seen as generalized version of the standard euclidean distance which corresponds to minkowski distance with p=2.

Parameters:
  • p (float) – int or float larger than 1, exponent to which the difference between preds and target is to be raised

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> from torchmetrics.regression import MinkowskiDistance
>>> target = tensor([1.0, 2.8, 3.5, 4.5])
>>> preds = tensor([6.1, 2.11, 3.1, 5.6])
>>> minkowski_distance = MinkowskiDistance(3)
>>> minkowski_distance(preds, target)
tensor(5.1220)
plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

Tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>> from torch import randn
>>> # Example plotting a single value
>>> from torchmetrics.regression import MinkowskiDistance
>>> metric = MinkowskiDistance(p=3)
>>> metric.update(randn(10,), randn(10,))
>>> fig_, ax_ = metric.plot()
../_images/minkowski_distance-1.png
>>> from torch import randn
>>> # Example plotting multiple values
>>> from torchmetrics.regression import MinkowskiDistance
>>> metric = MinkowskiDistance(p=3)
>>> values = []
>>> for _ in range(10):
...     values.append(metric(randn(10,), randn(10,)))
>>> fig, ax = metric.plot(values)
../_images/minkowski_distance-2.png

Functional Interface

torchmetrics.functional.minkowski_distance(preds, targets, p)[source]

Compute the Minkowski distance.

\[\begin{split}d_{\text{Minkowski}} = \\sum_{i}^N (| y_i - \\hat{y_i} |^p)^\frac{1}{p}\end{split}\]

This metric can be seen as generalized version of the standard euclidean distance which corresponds to minkowski distance with p=2.

Parameters:
  • preds (Tensor) – estimated labels of type Tensor

  • targets (Tensor) – ground truth labels of type Tensor

  • p (float) – int or float larger than 1, exponent to which the difference between preds and target is to be raised

Return type:

Tensor

Returns:

Tensor with the Minkowski distance

Example

>>> from torchmetrics.functional.regression import minkowski_distance
>>> x = torch.tensor([1.0, 2.8, 3.5, 4.5])
>>> y = torch.tensor([6.1, 2.11, 3.1, 5.6])
>>> minkowski_distance(x, y, p=3)
tensor(5.1220)
Read the Docs v: stable
Versions
latest
stable
v1.1.0
v1.0.3
v1.0.2
v1.0.1
v1.0.0
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.