Shortcuts

Spectral Distortion Index

Module Interface

class torchmetrics.image.SpectralDistortionIndex(p=1, reduction='elementwise_mean', **kwargs)[source]

Compute Spectral Distortion Index (SpectralDistortionIndex) also now as D_lambda.

The metric is used to compare the spectral distortion between two images.

As input to forward and update the metric accepts the following input

  • preds (Tensor): Low resolution multispectral image of shape (N,C,H,W)

  • target``(:class:`~torch.Tensor`): High resolution fused image of shape ``(N,C,H,W)

As output of forward and compute the metric returns the following output

  • sdi (Tensor): if reduction!='none' returns float scalar tensor with average SDI value over sample else returns tensor of shape (N,) with SDI values per sample

Parameters:
  • p (int) – Large spectral differences

  • reduction (Literal['elementwise_mean', 'sum', 'none']) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean (default)

    • 'sum': takes the sum

    • 'none': no reduction will be applied

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> import torch
>>> _ = torch.manual_seed(42)
>>> from torchmetrics.image import SpectralDistortionIndex
>>> preds = torch.rand([16, 3, 16, 16])
>>> target = torch.rand([16, 3, 16, 16])
>>> sdi = SpectralDistortionIndex()
>>> sdi(preds, target)
tensor(0.0234)
plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

Tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>> # Example plotting a single value
>>> import torch
>>> _ = torch.manual_seed(42)
>>> from torchmetrics.image import SpectralDistortionIndex
>>> preds = torch.rand([16, 3, 16, 16])
>>> target = torch.rand([16, 3, 16, 16])
>>> metric = SpectralDistortionIndex()
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
../_images/spectral_distortion_index-1.png
>>> # Example plotting multiple values
>>> import torch
>>> _ = torch.manual_seed(42)
>>> from torchmetrics.image import SpectralDistortionIndex
>>> preds = torch.rand([16, 3, 16, 16])
>>> target = torch.rand([16, 3, 16, 16])
>>> metric = SpectralDistortionIndex()
>>> values = [ ]
>>> for _ in range(10):
...     values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
../_images/spectral_distortion_index-2.png

Functional Interface

torchmetrics.functional.image.spectral_distortion_index(preds, target, p=1, reduction='elementwise_mean')[source]

Calculate Spectral Distortion Index (SpectralDistortionIndex) also known as D_lambda.

Metric is used to compare the spectral distortion between two images.

Parameters:
  • preds (Tensor) – Low resolution multispectral image

  • target (Tensor) – High resolution fused image

  • p (int) – Large spectral differences

  • reduction (Literal['elementwise_mean', 'sum', 'none']) –

    a method to reduce metric score over labels.

    • 'elementwise_mean': takes the mean (default)

    • 'sum': takes the sum

    • 'none': no reduction will be applied

Return type:

Tensor

Returns:

Tensor with SpectralDistortionIndex score

Raises:
  • TypeError – If preds and target don’t have the same data type.

  • ValueError – If preds and target don’t have BxCxHxW shape.

  • ValueError – If p is not a positive integer.

Example

>>> from torchmetrics.functional.image import spectral_distortion_index
>>> _ = torch.manual_seed(42)
>>> preds = torch.rand([16, 3, 16, 16])
>>> target = torch.rand([16, 3, 16, 16])
>>> spectral_distortion_index(preds, target)
tensor(0.0234)
Read the Docs v: stable
Versions
latest
stable
v1.1.0
v1.0.3
v1.0.2
v1.0.1
v1.0.0
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.