Shortcuts

Relative Squared Error (RSE)

Module Interface

class torchmetrics.RelativeSquaredError(num_outputs=1, squared=True, **kwargs)[source]

Computes the relative squared error (RSE).

\[\text{RSE} = \frac{\sum_i^N(y_i - \hat{y_i})^2}{\sum_i^N(y_i - \overline{y})^2}\]

Where \(y\) is a tensor of target values with mean \(\overline{y}\), and \(\hat{y}\) is a tensor of predictions.

If num_outputs > 1, the returned value is averaged over all the outputs.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): Predictions from model in float tensor with shape (N,) or (N, M) (multioutput)

  • target (Tensor): Ground truth values in float tensor with shape (N,) or (N, M) (multioutput)

As output of forward and compute the metric returns the following output:

  • rse (Tensor): A tensor with the RSE score(s)

Parameters:
  • num_outputs (int) – Number of outputs in multioutput setting

  • squared (bool) – If True returns RSE value, if False returns RRSE value.

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> from torchmetrics.regression import RelativeSquaredError
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> relative_squared_error = RelativeSquaredError()
>>> relative_squared_error(preds, target)
tensor(0.0514)
plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

Tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>> from torch import randn
>>> # Example plotting a single value
>>> from torchmetrics.regression import RelativeSquaredError
>>> metric = RelativeSquaredError()
>>> metric.update(randn(10,), randn(10,))
>>> fig_, ax_ = metric.plot()
../_images/rse-1.png
>>> from torch import randn
>>> # Example plotting multiple values
>>> from torchmetrics.regression import RelativeSquaredError
>>> metric = RelativeSquaredError()
>>> values = []
>>> for _ in range(10):
...     values.append(metric(randn(10,), randn(10,)))
>>> fig, ax = metric.plot(values)
../_images/rse-2.png

Functional Interface

torchmetrics.functional.relative_squared_error(preds, target, squared=True)[source]

Computes the relative squared error (RSE).

\[\text{RSE} = \frac{\sum_i^N(y_i - \hat{y_i})^2}{\sum_i^N(y_i - \overline{y})^2}\]

Where \(y\) is a tensor of target values with mean \(\overline{y}\), and \(\hat{y}\) is a tensor of predictions.

If preds and targets are 2D tensors, the RSE is averaged over the second dim.

Parameters:
  • preds (Tensor) – estimated labels

  • target (Tensor) – ground truth labels

  • squared (bool) – returns RRSE value if set to False

Return type:

Tensor

Returns:

Tensor with RSE

Example

>>> from torchmetrics.functional.regression import relative_squared_error
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> relative_squared_error(preds, target)
tensor(0.0514)
Read the Docs v: stable
Versions
latest
stable
v1.1.0
v1.0.3
v1.0.2
v1.0.1
v1.0.0
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.