Shortcuts

Extended Edit Distance

Module Interface

class torchmetrics.ExtendedEditDistance(language='en', return_sentence_level_score=False, alpha=2.0, rho=0.3, deletion=0.2, insertion=1.0, **kwargs)[source]

Computes extended edit distance score (ExtendedEditDistance) [1] for strings or list of strings.

The metric utilises the Levenshtein distance and extends it by adding a jump operation.

Parameters
  • language (Literal[‘en’, ‘ja’]) – Language used in sentences. Only supports English (en) and Japanese (ja) for now.

  • return_sentence_level_score (bool) – An indication of whether sentence-level EED score is to be returned

  • alpha (float) – optimal jump penalty, penalty for jumps between characters

  • rho (float) – coverage cost, penalty for repetition of characters

  • deletion (float) – penalty for deletion of character

  • insertion (float) – penalty for insertion or substitution of character

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Returns

Extended edit distance score as a tensor

Example

>>> from torchmetrics import ExtendedEditDistance
>>> preds = ["this is the prediction", "here is an other sample"]
>>> target = ["this is the reference", "here is another one"]
>>> metric = ExtendedEditDistance()
>>> metric(preds=preds, target=target)
tensor(0.3078)

References

[1] P. Stanchev, W. Wang, and H. Ney, “EED: Extended Edit Distance Measure for Machine Translation”, submitted to WMT 2019. ExtendedEditDistance

Initializes internal Module state, shared by both nn.Module and ScriptModule.

compute()[source]

Calculate extended edit distance score.

Return type

Union[Tensor, Tuple[Tensor, Tensor]]

Returns

Extended edit distance score as tensor

update(preds, target)[source]

Update ExtendedEditDistance statistics.

Parameters
Return type

None

Functional Interface

torchmetrics.functional.extended_edit_distance(preds, target, language='en', return_sentence_level_score=False, alpha=2.0, rho=0.3, deletion=0.2, insertion=1.0)[source]

Computes extended edit distance score (ExtendedEditDistance) [1] for strings or list of strings. The metric utilises the Levenshtein distance and extends it by adding a jump operation.

Parameters
  • preds (Union[str, Sequence[str]]) – An iterable of hypothesis corpus.

  • target (Sequence[Union[str, Sequence[str]]]) – An iterable of iterables of reference corpus.

  • language (Literal[‘en’, ‘ja’]) – Language used in sentences. Only supports English (en) and Japanese (ja) for now. Defaults to en

  • return_sentence_level_score (bool) – An indication of whether sentence-level EED score is to be returned.

  • alpha (float) – optimal jump penalty, penalty for jumps between characters

  • rho (float) – coverage cost, penalty for repetition of characters

  • deletion (float) – penalty for deletion of character

  • insertion (float) – penalty for insertion or substitution of character

Return type

Union[Tensor, Tuple[Tensor, Tensor]]

Returns

Extended edit distance score as a tensor

Example

>>> from torchmetrics.functional import extended_edit_distance
>>> preds = ["this is the prediction", "here is an other sample"]
>>> target = ["this is the reference", "here is another one"]
>>> extended_edit_distance(preds=preds, target=target)
tensor(0.3078)

References

[1] P. Stanchev, W. Wang, and H. Ney, “EED: Extended Edit Distance Measure for Machine Translation”, submitted to WMT 2019. ExtendedEditDistance

Read the Docs v: stable
Versions
latest
stable
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
refactor-structure
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.