Shortcuts

Mean-Average-Precision (mAP)

Module Interface

class torchmetrics.detection.mean_ap.MeanAveragePrecision(box_format='xyxy', iou_type='bbox', iou_thresholds=None, rec_thresholds=None, max_detection_thresholds=None, class_metrics=False, **kwargs)[source]

Computes the Mean-Average-Precision (mAP) and Mean-Average-Recall (mAR) for object detection predictions. Optionally, the mAP and mAR values can be calculated per class.

Predicted boxes and targets have to be in Pascal VOC format (xmin-top left, ymin-top left, xmax-bottom right, ymax-bottom right). See the update() method for more information about the input format to this metric.

As input to forward and update the metric accepts the following input:

  • preds (List): A list consisting of dictionaries each containing the key-values (each dictionary corresponds to a single image). Parameters that should be provided per dict

    • boxes: (FloatTensor) of shape (num_boxes, 4) containing num_boxes detection boxes of the format specified in the constructor. By default, this method expects (xmin, ymin, xmax, ymax) in absolute image coordinates.

    • scores: FloatTensor of shape (num_boxes) containing detection scores for the boxes.

    • labels: IntTensor of shape (num_boxes) containing 0-indexed detection classes for the boxes.

    • masks: bool of shape (num_boxes, image_height, image_width) containing boolean masks. Only required when iou_type=”segm”.

  • target (List) A list consisting of dictionaries each containing the key-values (each dictionary corresponds to a single image). Parameters that should be provided per dict:

    • boxes: FloatTensor of shape (num_boxes, 4) containing num_boxes ground truth boxes of the format specified in the constructor. By default, this method expects (xmin, ymin, xmax, ymax) in absolute image coordinates.

    • labels: IntTensor of shape (num_boxes) containing 0-indexed ground truth classes for the boxes.

    • masks: bool of shape (num_boxes, image_height, image_width) containing boolean masks. Only required when iou_type=”segm”.

As output of forward and compute the metric returns the following output:

  • map_dict: A dictionary containing the following key-values:

    • map: (Tensor)

    • map_small: (Tensor)

    • map_medium:(Tensor)

    • map_large: (Tensor)

    • mar_1: (Tensor)

    • mar_10: (Tensor)

    • mar_100: (Tensor)

    • mar_small: (Tensor)

    • mar_medium: (Tensor)

    • mar_large: (Tensor)

    • map_50: (Tensor) (-1 if 0.5 not in the list of iou thresholds)

    • map_75: (Tensor) (-1 if 0.75 not in the list of iou thresholds)

    • map_per_class: (Tensor) (-1 if class metrics are disabled)

    • mar_100_per_class: (Tensor) (-1 if class metrics are disabled)

For an example on how to use this metric check the torchmetrics mAP example.

Note

map score is calculated with @[ IoU=self.iou_thresholds | area=all | max_dets=max_detection_thresholds ]. Caution: If the initialization parameters are changed, dictionary keys for mAR can change as well. The default properties are also accessible via fields and will raise an AttributeError if not available.

Note

This metric is following the mAP implementation of pycocotools, a standard implementation for the mAP metric for object detection.

Note

This metric requires you to have torchvision version 0.8.0 or newer installed (with corresponding version 1.7.0 of torch or newer). This metric requires pycocotools installed when iou_type is segm. Please install with pip install torchvision or pip install torchmetrics[detection].

Parameters
  • box_format (str) – Input format of given boxes. Supported formats are [`xyxy`, `xywh`, `cxcywh`].

  • iou_type (str) – Type of input (either masks or bounding-boxes) used for computing IOU. Supported IOU types are ["bbox", "segm"]. If using "segm", masks should be provided (see update()).

  • iou_thresholds (Optional[List[float]]) – IoU thresholds for evaluation. If set to None it corresponds to the stepped range [0.5,...,0.95] with step 0.05. Else provide a list of floats.

  • rec_thresholds (Optional[List[float]]) – Recall thresholds for evaluation. If set to None it corresponds to the stepped range [0,...,1] with step 0.01. Else provide a list of floats.

  • max_detection_thresholds (Optional[List[int]]) – Thresholds on max detections per image. If set to None will use thresholds [1, 10, 100]. Else, please provide a list of ints.

  • class_metrics (bool) – Option to enable per-class metrics for mAP and mAR_100. Has a performance impact.

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Raises
  • ModuleNotFoundError – If torchvision is not installed or version installed is lower than 0.8.0

  • ModuleNotFoundError – If iou_type is equal to seqm and pycocotools is not installed

  • ValueError – If class_metrics is not a boolean

  • ValueError – If preds is not of type (List[Dict[str, Tensor]])

  • ValueError – If target is not of type List[Dict[str, Tensor]]

  • ValueError – If preds and target are not of the same length

  • ValueError – If any of preds.boxes, preds.scores and preds.labels are not of the same length

  • ValueError – If any of target.boxes and target.labels are not of the same length

  • ValueError – If any box is not type float and of length 4

  • ValueError – If any class is not type int and of length 1

  • ValueError – If any score is not type float and of length 1

Example

>>> import torch
>>> from torchmetrics.detection.mean_ap import MeanAveragePrecision
>>> preds = [
...   dict(
...     boxes=torch.tensor([[258.0, 41.0, 606.0, 285.0]]),
...     scores=torch.tensor([0.536]),
...     labels=torch.tensor([0]),
...   )
... ]
>>> target = [
...   dict(
...     boxes=torch.tensor([[214.0, 41.0, 562.0, 285.0]]),
...     labels=torch.tensor([0]),
...   )
... ]
>>> metric = MeanAveragePrecision()
>>> metric.update(preds, target)
>>> from pprint import pprint
>>> pprint(metric.compute())
{'map': tensor(0.6000),
 'map_50': tensor(1.),
 'map_75': tensor(1.),
 'map_large': tensor(0.6000),
 'map_medium': tensor(-1.),
 'map_per_class': tensor(-1.),
 'map_small': tensor(-1.),
 'mar_1': tensor(0.6000),
 'mar_10': tensor(0.6000),
 'mar_100': tensor(0.6000),
 'mar_100_per_class': tensor(-1.),
 'mar_large': tensor(0.6000),
 'mar_medium': tensor(-1.),
 'mar_small': tensor(-1.)}

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Read the Docs v: stable
Versions
latest
stable
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.