Shortcuts

KL Divergence

Module Interface

class torchmetrics.KLDivergence(log_prob=False, reduction='mean', **kwargs)[source]

Computes the KL divergence:

D_{KL}(P||Q) = \sum_{x\in\mathcal{X}} P(x) \log\frac{P(x)}{Q{x}}

Where P and Q are probability distributions where P usually represents a distribution over data and Q is often a prior or approximation of P. It should be noted that the KL divergence is a non-symetrical metric i.e. D_{KL}(P||Q) \neq D_{KL}(Q||P).

As input to forward and update the metric accepts the following input:

  • p (Tensor): a data distribution with shape (N, d)

  • q (Tensor): prior or approximate distribution with shape (N, d)

As output of forward and compute the metric returns the following output:

  • kl_divergence (Tensor): A tensor with the KL divergence

Parameters
  • log_prob (bool) – bool indicating if input is log-probabilities or probabilities. If given as probabilities, will normalize to make sure the distributes sum to 1.

  • reduction (Literal[‘mean’, ‘sum’, ‘none’, None]) –

    Determines how to reduce over the N/batch dimension:

    • 'mean' [default]: Averages score across samples

    • 'sum': Sum score across samples

    • 'none' or None: Returns score per sample

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Raises
  • TypeError – If log_prob is not an bool.

  • ValueError – If reduction is not one of 'mean', 'sum', 'none' or None.

Note

Half precision is only support on GPU for this metric

Example

>>> import torch
>>> from torchmetrics.functional import kl_divergence
>>> p = torch.tensor([[0.36, 0.48, 0.16]])
>>> q = torch.tensor([[1/3, 1/3, 1/3]])
>>> kl_divergence(p, q)
tensor(0.0853)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Functional Interface

torchmetrics.functional.kl_divergence(p, q, log_prob=False, reduction='mean')[source]

Computes KL divergence

D_{KL}(P||Q) = \sum_{x\in\mathcal{X}} P(x) \log\frac{P(x)}{Q{x}}

Where P and Q are probability distributions where P usually represents a distribution over data and Q is often a prior or approximation of P. It should be noted that the KL divergence is a non-symetrical metric i.e. D_{KL}(P||Q) \neq D_{KL}(Q||P).

Parameters
  • p (Tensor) – data distribution with shape [N, d]

  • q (Tensor) – prior or approximate distribution with shape [N, d]

  • log_prob (bool) – bool indicating if input is log-probabilities or probabilities. If given as probabilities, will normalize to make sure the distributes sum to 1

  • reduction (Literal[‘mean’, ‘sum’, ‘none’, None]) –

    Determines how to reduce over the N/batch dimension:

    • 'mean' [default]: Averages score across samples

    • 'sum': Sum score across samples

    • 'none' or None: Returns score per sample

Example

>>> import torch
>>> p = torch.tensor([[0.36, 0.48, 0.16]])
>>> q = torch.tensor([[1/3, 1/3, 1/3]])
>>> kl_divergence(p, q)
tensor(0.0853)
Return type

Tensor

Read the Docs v: stable
Versions
latest
stable
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.