Mean Squared Log Error (MSLE)¶
Module Interface¶
- class torchmetrics.MeanSquaredLogError(**kwargs)[source]
Computes mean squared logarithmic error (MSLE):
Where
is a tensor of target values, and
is a tensor of predictions.
As input to
forward
andupdate
the metric accepts the following input:As output of
forward
andcompute
the metric returns the following output:mean_squared_log_error
(Tensor
): A tensor with the mean squared log error
- Parameters
kwargs¶ (
Any
) – Additional keyword arguments, see Advanced metric settings for more info.
Example
>>> from torchmetrics import MeanSquaredLogError >>> target = torch.tensor([2.5, 5, 4, 8]) >>> preds = torch.tensor([3, 5, 2.5, 7]) >>> mean_squared_log_error = MeanSquaredLogError() >>> mean_squared_log_error(preds, target) tensor(0.0397)
Note
Half precision is only support on GPU for this metric
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Functional Interface¶
- torchmetrics.functional.mean_squared_log_error(preds, target)[source]
Computes mean squared log error.
- Parameters
- Return type
- Returns
Tensor with RMSLE
Example
>>> from torchmetrics.functional import mean_squared_log_error >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> mean_squared_log_error(x, y) tensor(0.0207)
Note
Half precision is only support on GPU for this metric