Shortcuts

Relative Average Spectral Error (RASE)

Module Interface

class torchmetrics.image.RelativeAverageSpectralError(window_size=8, **kwargs)[source]

Computes Relative Average Spectral Error (RASE) (RelativeAverageSpectralError).

As input to forward and update the metric accepts the following input

  • preds (Tensor): Predictions from model of shape (N,C,H,W)

  • target (Tensor): Ground truth values of shape (N,C,H,W)

As output of forward and compute the metric returns the following output

  • rase (Tensor): returns float scalar tensor with average RASE value over sample

Parameters:
Returns:

Relative Average Spectral Error (RASE)

Example

>>> import torch
>>> from torchmetrics.image import RelativeAverageSpectralError
>>> g = torch.manual_seed(22)
>>> preds = torch.rand(4, 3, 16, 16)
>>> target = torch.rand(4, 3, 16, 16)
>>> rase = RelativeAverageSpectralError()
>>> rase(preds, target)
tensor(5114.6641)
Raises:

ValueError – If window_size is not a positive integer.

plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

Tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.image import RelativeAverageSpectralError
>>> metric = RelativeAverageSpectralError()
>>> metric.update(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16))
>>> fig_, ax_ = metric.plot()
../_images/relative_average_spectral_error-1.png
>>> # Example plotting multiple values
>>> import torch
>>> _ = torch.manual_seed(42)
>>> from torchmetrics.image import RelativeAverageSpectralError
>>> metric = RelativeAverageSpectralError()
>>> values = [ ]
>>> for _ in range(10):
...     values.append(metric(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16)))
>>> fig_, ax_ = metric.plot(values)
../_images/relative_average_spectral_error-2.png

Functional Interface

torchmetrics.functional.image.relative_average_spectral_error(preds, target, window_size=8)[source]

Compute Relative Average Spectral Error (RASE) (RelativeAverageSpectralError).

Parameters:
  • preds (Tensor) – Deformed image

  • target (Tensor) – Ground truth image

  • window_size (int) – Sliding window used for rmse calculation

Return type:

Tensor

Returns:

Relative Average Spectral Error (RASE)

Example

>>> from torchmetrics.functional.image import relative_average_spectral_error
>>> g = torch.manual_seed(22)
>>> preds = torch.rand(4, 3, 16, 16)
>>> target = torch.rand(4, 3, 16, 16)
>>> relative_average_spectral_error(preds, target)
tensor(5114.6641)
Raises:

ValueError – If window_size is not a positive integer.

Read the Docs v: stable
Versions
latest
stable
v1.1.0
v1.0.3
v1.0.2
v1.0.1
v1.0.0
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.