Shortcuts

Root Mean Squared Error Using Sliding Window

Module Interface

class torchmetrics.image.RootMeanSquaredErrorUsingSlidingWindow(window_size=8, **kwargs)[source]

Computes Root Mean Squared Error (RMSE) using sliding window.

As input to forward and update the metric accepts the following input

  • preds (Tensor): Predictions from model of shape (N,C,H,W)

  • target (Tensor): Ground truth values of shape (N,C,H,W)

As output of forward and compute the metric returns the following output

  • rmse_sw (Tensor): returns float scalar tensor with average RMSE-SW value over sample

Parameters:

Example

>>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow
>>> g = torch.manual_seed(22)
>>> preds = torch.rand(4, 3, 16, 16)
>>> target = torch.rand(4, 3, 16, 16)
>>> rmse_sw = RootMeanSquaredErrorUsingSlidingWindow()
>>> rmse_sw(preds, target)
tensor(0.3999)
Raises:

ValueError – If window_size is not a positive integer.

plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

Tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow
>>> metric = RootMeanSquaredErrorUsingSlidingWindow()
>>> metric.update(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16))
>>> fig_, ax_ = metric.plot()
../_images/root_mean_squared_error_using_sliding_window-1.png
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow
>>> metric = RootMeanSquaredErrorUsingSlidingWindow()
>>> values = [ ]
>>> for _ in range(10):
...     values.append(metric(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16)))
>>> fig_, ax_ = metric.plot(values)
../_images/root_mean_squared_error_using_sliding_window-2.png

Functional Interface

torchmetrics.functional.image.root_mean_squared_error_using_sliding_window(preds, target, window_size=8, return_rmse_map=False)[source]

Compute Root Mean Squared Error (RMSE) using sliding window.

Parameters:
  • preds (Tensor) – Deformed image

  • target (Tensor) – Ground truth image

  • window_size (int) – Sliding window used for rmse calculation

  • return_rmse_map (bool) – An indication whether the full rmse reduced image should be returned.

Return type:

Union[Tensor, None, Tuple[Optional[Tensor], Tensor]]

Returns:

RMSE using sliding window (Optionally) RMSE map

Example

>>> from torchmetrics.functional.image import root_mean_squared_error_using_sliding_window
>>> g = torch.manual_seed(22)
>>> preds = torch.rand(4, 3, 16, 16)
>>> target = torch.rand(4, 3, 16, 16)
>>> root_mean_squared_error_using_sliding_window(preds, target)
tensor(0.3999)
Raises:

ValueError – If window_size is not a positive integer.

Read the Docs v: stable
Versions
latest
stable
v1.1.0
v1.0.3
v1.0.2
v1.0.1
v1.0.0
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.