Shortcuts

Log Cosh Error

Module Interface

class torchmetrics.LogCoshError(num_outputs=1, **kwargs)[source]

Compute the LogCosh Error.

\[\text{LogCoshError} = \log\left(\frac{\exp(\hat{y} - y) + \exp(\hat{y - y})}{2}\right)\]

Where \(y\) is a tensor of target values, and \(\hat{y}\) is a tensor of predictions.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): Estimated labels with shape (batch_size,) or (batch_size, num_outputs)

  • target (Tensor): Ground truth labels with shape (batch_size,) or (batch_size, num_outputs)

As output of forward and compute the metric returns the following output:

  • log_cosh_error (Tensor): A tensor with the log cosh error

Parameters:
Example (single output regression)::
>>> from torchmetrics.regression import LogCoshError
>>> preds = torch.tensor([3.0, 5.0, 2.5, 7.0])
>>> target = torch.tensor([2.5, 5.0, 4.0, 8.0])
>>> log_cosh_error = LogCoshError()
>>> log_cosh_error(preds, target)
tensor(0.3523)
Example (multi output regression)::
>>> from torchmetrics.regression import LogCoshError
>>> preds = torch.tensor([[3.0, 5.0, 1.2], [-2.1, 2.5, 7.0]])
>>> target = torch.tensor([[2.5, 5.0, 1.3], [0.3, 4.0, 8.0]])
>>> log_cosh_error = LogCoshError(num_outputs=3)
>>> log_cosh_error(preds, target)
tensor([0.9176, 0.4277, 0.2194])
plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters:
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type:

Tuple[Figure, Union[Axes, ndarray]]

Returns:

Figure and Axes object

Raises:

ModuleNotFoundError – If matplotlib is not installed

>>> from torch import randn
>>> # Example plotting a single value
>>> from torchmetrics.regression import LogCoshError
>>> metric = LogCoshError()
>>> metric.update(randn(10,), randn(10,))
>>> fig_, ax_ = metric.plot()
../_images/log_cosh_error-1.png
>>> from torch import randn
>>> # Example plotting multiple values
>>> from torchmetrics.regression import LogCoshError
>>> metric = LogCoshError()
>>> values = []
>>> for _ in range(10):
...     values.append(metric(randn(10,), randn(10,)))
>>> fig, ax = metric.plot(values)
../_images/log_cosh_error-2.png

Functional Interface

torchmetrics.functional.log_cosh_error(preds, target)[source]

Compute the LogCosh Error.

\[\text{LogCoshError} = \log\left(\frac{\exp(\hat{y} - y) + \exp(\hat{y - y})}{2}\right)\]

Where \(y\) is a tensor of target values, and \(\hat{y}\) is a tensor of predictions.

Parameters:
  • preds (Tensor) – estimated labels with shape (batch_size,) or (batch_size, num_outputs)`

  • target (Tensor) – ground truth labels with shape (batch_size,) or (batch_size, num_outputs)`

Return type:

Tensor

Returns:

Tensor with LogCosh error

Example (single output regression)::
>>> from torchmetrics.functional.regression import log_cosh_error
>>> preds = torch.tensor([3.0, 5.0, 2.5, 7.0])
>>> target = torch.tensor([2.5, 5.0, 4.0, 8.0])
>>> log_cosh_error(preds, target)
tensor(0.3523)
Example (multi output regression)::
>>> from torchmetrics.functional.regression import log_cosh_error
>>> preds = torch.tensor([[3.0, 5.0, 1.2], [-2.1, 2.5, 7.0]])
>>> target = torch.tensor([[2.5, 5.0, 1.3], [0.3, 4.0, 8.0]])
>>> log_cosh_error(preds, target)
tensor([0.9176, 0.4277, 0.2194])
Read the Docs v: stable
Versions
latest
stable
v1.1.0
v1.0.3
v1.0.2
v1.0.1
v1.0.0
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.