Shortcuts

Concordance Corr. Coef.

Module Interface

class torchmetrics.ConcordanceCorrCoef(num_outputs=1, **kwargs)[source]

Compute concordance correlation coefficient that measures the agreement between two variables.

\rho_c = \frac{2 \rho \sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}

where \mu_x, \mu_y is the means for the two variables, \sigma_x^2, \sigma_y^2 are the corresponding variances and rho is the pearson correlation coefficient between the two variables.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): either single output float tensor with shape (N,) or multioutput float tensor of shape (N,d)

  • target (Tensor): either single output float tensor with shape (N,) or multioutput float tensor of shape (N,d)

As output of forward and compute the metric returns the following output:

  • concordance (Tensor): A scalar float tensor with the concordance coefficient(s) for non-multioutput input or a float tensor with shape (d,) for multioutput input

Parameters
Example (single output regression):
>>> from torchmetrics.regression import ConcordanceCorrCoef
>>> from torch import tensor
>>> target = tensor([3, -0.5, 2, 7])
>>> preds = tensor([2.5, 0.0, 2, 8])
>>> concordance = ConcordanceCorrCoef()
>>> concordance(preds, target)
tensor(0.9777)
Example (multi output regression):
>>> from torchmetrics.regression import ConcordanceCorrCoef
>>> target = tensor([[3, -0.5], [2, 7]])
>>> preds = tensor([[2.5, 0.0], [2, 8]])
>>> concordance = ConcordanceCorrCoef(num_outputs=2)
>>> concordance(preds, target)
tensor([0.7273, 0.9887])

Initializes internal Module state, shared by both nn.Module and ScriptModule.

plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type

Tuple[Figure, Union[Axes, ndarray]]

Returns

Figure and Axes object

Raises

ModuleNotFoundError – If matplotlib is not installed

>>> from torch import randn
>>> # Example plotting a single value
>>> from torchmetrics.regression import ConcordanceCorrCoef
>>> metric = ConcordanceCorrCoef()
>>> metric.update(randn(10,), randn(10,))
>>> fig_, ax_ = metric.plot()

(Source code, png, hires.png, pdf)

../_images/concordance_corr_coef-1.png
>>> from torch import randn
>>> # Example plotting multiple values
>>> from torchmetrics.regression import ConcordanceCorrCoef
>>> metric = ConcordanceCorrCoef()
>>> values = []
>>> for _ in range(10):
...     values.append(metric(randn(10,), randn(10,)))
>>> fig, ax = metric.plot(values)

(Source code, png, hires.png, pdf)

../_images/concordance_corr_coef-2.png

Functional Interface

torchmetrics.functional.concordance_corrcoef(preds, target)[source]

Compute concordance correlation coefficient that measures the agreement between two variables.

\rho_c = \frac{2 \rho \sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}

where \mu_x, \mu_y is the means for the two variables, \sigma_x^2, \sigma_y^2 are the corresponding variances and rho is the pearson correlation coefficient between the two variables.

Parameters
  • preds (Tensor) – estimated scores

  • target (Tensor) – ground truth scores

Example (single output regression):
>>> from torchmetrics.functional.regression import concordance_corrcoef
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> concordance_corrcoef(preds, target)
tensor([0.9777])
Example (multi output regression):
>>> from torchmetrics.functional.regression import concordance_corrcoef
>>> target = torch.tensor([[3, -0.5], [2, 7]])
>>> preds = torch.tensor([[2.5, 0.0], [2, 8]])
>>> concordance_corrcoef(preds, target)
tensor([0.7273, 0.9887])
Return type

Tensor

Read the Docs v: latest
Versions
latest
stable
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.