Shortcuts

Cosine Similarity

Module Interface

class torchmetrics.CosineSimilarity(reduction='sum', **kwargs)[source]

Compute the Cosine Similarity.

cos_{sim}(x,y) = \frac{x \cdot y}{||x|| \cdot ||y||} =
\frac{\sum_{i=1}^n x_i y_i}{\sqrt{\sum_{i=1}^n x_i^2}\sqrt{\sum_{i=1}^n y_i^2}}

where y is a tensor of target values, and x is a tensor of predictions.

As input to forward and update the metric accepts the following input:

  • preds (Tensor): Predicted float tensor with shape (N,d)

  • target (Tensor): Ground truth float tensor with shape (N,d)

As output of forward and compute the metric returns the following output:

  • cosine_similarity (Tensor): A float tensor with the cosine similarity

Parameters
  • reduction (Literal[‘mean’, ‘sum’, ‘none’, None]) – how to reduce over the batch dimension using ‘sum’, ‘mean’ or ‘none’ (taking the individual scores)

  • kwargs (Any) – Additional keyword arguments, see Advanced metric settings for more info.

Example

>>> from torch import tensor
>>> from torchmetrics.regression import CosineSimilarity
>>> target = tensor([[0, 1], [1, 1]])
>>> preds = tensor([[0, 1], [0, 1]])
>>> cosine_similarity = CosineSimilarity(reduction = 'mean')
>>> cosine_similarity(preds, target)
tensor(0.8536)

Initializes internal Module state, shared by both nn.Module and ScriptModule.

plot(val=None, ax=None)[source]

Plot a single or multiple values from the metric.

Parameters
  • val (Union[Tensor, Sequence[Tensor], None]) – Either a single result from calling metric.forward or metric.compute or a list of these results. If no value is provided, will automatically call metric.compute and plot that result.

  • ax (Optional[Axes]) – An matplotlib axis object. If provided will add plot to that axis

Return type

Tuple[Figure, Union[Axes, ndarray]]

Returns

Figure and Axes object

Raises

ModuleNotFoundError – If matplotlib is not installed

>>> from torch import randn
>>> # Example plotting a single value
>>> from torchmetrics.regression import CosineSimilarity
>>> metric = CosineSimilarity()
>>> metric.update(randn(10,), randn(10,))
>>> fig_, ax_ = metric.plot()

(Source code, png, hires.png, pdf)

../_images/cosine_similarity-1.png
>>> from torch import randn
>>> # Example plotting multiple values
>>> from torchmetrics.regression import CosineSimilarity
>>> metric = CosineSimilarity()
>>> values = []
>>> for _ in range(10):
...     values.append(metric(randn(10,), randn(10,)))
>>> fig, ax = metric.plot(values)

(Source code, png, hires.png, pdf)

../_images/cosine_similarity-2.png

Functional Interface

torchmetrics.functional.cosine_similarity(preds, target, reduction='sum')[source]

Compute the Cosine Similarity.

cos_{sim}(x,y) = \frac{x \cdot y}{||x|| \cdot ||y||} =
\frac{\sum_{i=1}^n x_i y_i}{\sqrt{\sum_{i=1}^n x_i^2}\sqrt{\sum_{i=1}^n y_i^2}}

where y is a tensor of target values, and x is a tensor of predictions.

Parameters
  • preds (Tensor) – Predicted tensor with shape (N,d)

  • target (Tensor) – Ground truth tensor with shape (N,d)

  • reduction (Optional[str]) – The method of reducing along the batch dimension using sum, mean or taking the individual scores

Example

>>> from torchmetrics.functional.regression import cosine_similarity
>>> target = torch.tensor([[1, 2, 3, 4],
...                        [1, 2, 3, 4]])
>>> preds = torch.tensor([[1, 2, 3, 4],
...                       [-1, -2, -3, -4]])
>>> cosine_similarity(preds, target, 'none')
tensor([ 1.0000, -1.0000])
Return type

Tensor

Read the Docs v: latest
Versions
latest
stable
v0.11.4
v0.11.3
v0.11.2
v0.11.1
v0.11.0
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.3
v0.9.2
v0.9.1
v0.9.0
v0.8.2
v0.8.1
v0.8.0
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.2
v0.6.1
v0.6.0
v0.5.1
v0.5.0
v0.4.1
v0.4.0
v0.3.2
v0.3.1
v0.3.0
v0.2.0
v0.1.0
Downloads
pdf
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.